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FUNDAMENTAL QUANTUM i/F NOISE IN ULTRASMALL SEMICONDUCTOR

DEVICES AND THEIR OPTIMAL DESIGN PRINCIPLES

Peter H. Handel

Department of Physics, University of Missouri, St. Louis, MO 63121

THIRD ANNUAL REPORT

AFOSR Grant No. 85 - 0130

Starting Date: May 1, 1985; Date of this Report: May 30, 1988

Abstract

During this period I have extended the second-quantized derivation of

quantum I/f noise shown in the Second Annual Report to the general case of N

particles present in the final state. I also have derived the quantum 1/f cross

correlations and the corresponding cross -correlation spectra, which are

important for the calculation of quantum 1/f noise in kinetic coefficients such as

the mobility and the diffusion coefficient of the current carriers in solids. In

order to better explain the foundations of quantum I/f theory, I have given a

derivation of the quantum i/f Schroedinger fields from quantum electrodynamics

with the use of coherent states. Finally, I have given a direct derivation of the

quantum 1/f effect in time and space. In terms of applications, a quantum 1/f

noise study of MIS detectors was performed. Experimentally, with the

collaboration of the group of Prof. A. van der Ziel, an excellent experimental

verification of quantum i/f theory was performed on semiconductor diodes,

transistors and vacuum tubes, and a review article on the results of the

experimental aplication and verification of my theory was published by A. van der

Ziel in the Proceedings of IEEE in March 1988.
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I. INTRODUCTION

The present report will give a general description of the very extensive work

performed in the reported period. This work was done along two major directions:

1. Theory, which is presented in Part I of this Report. This had the goal to

further develop the quantum 1/f theory and to clarify its foundations and

starting points. This part has nine sections, an Appendix, and its own

references.

2. Application to MIS infrared detector structures, presented in Part II. This

part is dedicated to a detailed quantum i/f noise study of an important type of

infrared detector, the metal - insulator - semiconductor structure.

Part III lists the publications corresponding to this grant period.

At the III Conference on Quantum i/f Noise and i/f Noise in Minneapolis,

April 28-29, 1938, Prof. C.M. Van Vliet also presented a quantum i/f noise

derivation in the Van Hove limit. At present our attention is focussed on

applications of the newly calculated cross - spectra of quantum 1/f noise.
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PART I

THEORY



II. DERIVATION OF THE PAIR-CORRELATION FUNCTION FOR BOSONS

Denoting by *(_,t) and X( ,t) the single-particle wave functions of two

scattered bosons, which take into account both the interaction with the

scattering center of forces and the simultaneous interaction with the photons,

the quantum state of two bosons, both emerging from the same interaction process,

can be written in the Heisenberg picture in the form

IS> - (1/2)1/2 jd30jd (, n>, (2.1) p

where *() designates the Heisenberg field operator at a fixed time t = 0 and

the single-particle wave functions have also been taken at t - 0. The two

single-particle wave functions included differ only through some external and

internal phase factors. Vectors are printed in boldface. The state in Eq.

(2.1) is written as a product of two single-particle wave functions, because we

neglect all interactions between the particles except for the quantum exchange

symmetry between identical particles. We have limited ourselves here to two

outgoing particles for the sake of simplicity only; the general N-particle case

is treated in Sec. VIII.

The operator of the equal-time pair-correlation6 in space is

0- * +j 1 )*+(x 2 )*(x 2 ) (x1 ). (2.2)

This corresponds to a density autocorrelation function6. The presence of two-

particle coordinates in the operator 0 does not mean that we are considering

two-particle interactions, it only means that the expectation value which we are

calculating depends on the relative position of the particles. Using the well



-6-

known commutation relations

-(x)W+( ) (Y)*(;) - 6( -), (2.3)

WY) y) - 4( ) = 0, (2.3a)

- + 0, (2.3b)

we obtain the matrix element:
<s° 10 Is0>

-(1/2) <01 (n') (')+(-XJ) *+(-x2) *(x2) *Cx6) *(Z) *(G)10>

= (-/2)E6( - x2) + 6(n - i)6( ;' x2)]

16(n x06) 6(- x1) + 6(,- x2 )(' x1 ), (2.4)

where IS*> is the state with well defined particle coordinates.

The pair-correlation function is then

A - <S 10 IS> - (1/ 2 )<x*( ()0*( ) )x(iz) + x*('), (x) (x)x(j)

+* xj(i*i)1(ii)X(-i) + x*(XJWr-), *(j)( )> (2.5)

1) If we assume that the wave functions *(x), x(Xb), ...of different

particles in the outgoing flux differ only through a general phase factor, we

obtain from Eq. (2.5)

<A> = 2<I.(xj)1210(x2)12>,

which is similar to our previous result 2 2<I (t) (t+T)12> = 2<10(tl)$t2)12>,

the only distinction being the use of the spatial coordinate along the beam

instead of the time coordinate. As before I"5 we write from Eq. (2.5)

<A> 2<I no(Xl) + Ei *iBr(Xl)1 2 I no(Y2) + i 1ir(x2) 12>

a 2<($noi2 + Z, i'Br2)2 .

+ 21*no(xl)$no(x2) Ei < * iBr(X2)iBr(Xl)> + cc. (2.6)
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Here we have separated the part with bremsstrahlung into the photon mode I, *IBr

from the main part, no, without bremsstrahlung, and cc denotes the complex _

conjugate of the preceeding term. Each IBr term has an independent random

phase; as we shall see in Sec. IV, this is the random in itial phase of each

photon mode I, where I includes both the wave vector and the polarization. The

averaging in Eqs. (2.6) and (2.6a) is with respect to these phases, or, if the

emitted photons are included into the single-particle wave function, the average

includes also the expectation value in the space of photons. Due to the uniform

motion of the scattered particles, the outgoing radial coordinate and the time

are equivalent; we will check this intuitive conjecture later in Sec. VI and we
S

will prove by direct calculation of the correlation in space and in time that it

is a very good approximation.

We have denoted here by * the stochastic Schroedinger field j used in our
S

previous publications 1"5. This field was not second-quantized, and not an

operator as far as the charged particles were concerned. It was always called a

field rather than a wave function, in order to emphasize the presence of random

phase factors in its expression, which make it stochastic in nature, while the

term wave function was reserved for pure states rather than mixture of states.

The stochastic Schroedinger field description is equivalent with the density

matrix description of quantum mixtures. The reason why * still was an operator

in the first paper1 is that while the particles were not second-quantized in

that paper, the electromagnetic field was. Therefore, in that paper , was an

operator only in the space of the photons.

2) If, on the other hand, the single-particle wave functions (X), X(), ... IN

also differ through mutually independent sets of random phases in their energy

loss (*IBr, XiBr, ...) parts as we conclude in Sec. IV, the first and the last

terms in Eq. (2.5) are constant and do not yield 1/f noise, but the two middle
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terms give again the same result as in Eq. (2.6) 1'

S

<A> . <I,(x 1) 12><l(x 2) 12> + 1< *(xz(x2)>12

- (1 no 12 + Z, iBr 12)2 + + E <*Br(X1*Br(X2) I> 12

(lno2 2IBr)2 + 14+ E
•(11no 12  + Et 1 Br 2) no + (Ej IW iBrl 2 )2

+ *no(Xl) no(x) Zi f*iBr(x2) iBr(xl) + cc
S

= <l,(x) 12><I (x2) 12> + <1,(xi)12 10(x 2)12>. (2.7)

Both in the first and last form we notice that the first term is constant, while

the second is the familiar APSPSWF. Therefore, this is also similar to the

APSPSWF result obtained in our previous papers 1"5 , but this time the fractional

spectrum will be two times smaller,due (see Sec. VIII) to a I/N factor with N-2;

fermions have 1I(N-1). Here the average is with respect to the sets of random 7

phases present in the energy loss (bremsstrahlung) contributions, or, if we

include the photons in second quantization into the final state (see Eq. 4.15),

the average sign in Eq. (2.7) also includes the expectation value in the Hilbert

space of the photons, which yields exactly the same result. The arguments have

been omitted in some of the terms which do not actually depend on them according

to Eq. (4.15) of Sec. IV. Sec. VIII gives the APSPSWF result for any N. .7 'k

We conclude that both if the outgoing particle wave functions *(xi, X(x),

.. differ only by an arbitrary general phase factor, and if they also have

independent sets of phases in their bremsstrahlung energy loss parts, our

previous method of calculating the autocorrelation function is justified on the

basis of the present second-quantized calculation; see Sec. IV-V for details.

In Sec. IV, we will determine the correct single-particle wave functions (or S

Schroedinger fields) which lead to Eq. (2.7) and to the fractional spectrum

2aA/fN for N outgoing particles (Sec. VIII) with and without the inclusion of

0%A/fN

4 
'p.M.To



the photons into the final state of the scattered particles.

Why do we allow for so many possibilities ? Do we need to consider both

cases with and without the photons included into the final state? Often in

electrophysics one describes the quantum motion of an electron in an external

time-dependent, electromagnetic field of force. In this most convenient

description7 energy is not conserved, and the electromagnetic field energy is

not included into the Hamiltonian which is time-dependent. The state does not

include the field either, and is a nonstationary electronic state. This

corresponds to the treatment2 presented in this section, i.e., without the

photons included in the state (Sec. IV). An equivalent, more fundamental,

approach includes both the charged particles and the field energies with their

interaction into the Hamiltonian. Then the photons must be present in the

state, as we did beforel. The two methods are equivalent, and give the same

results, with no contradictions. We consider here both methods.

Finally, why do we need to consider both the case of identical single- i

particle wave functions (except for a general phase factor) and the case of wave

functions which have different sets of phases in their energy-loss parts?

Because both cases may occur in practice. Indeed, usually the incoming

particles in a scattering experiment have a random shift in space or time which

scrambles their energy-loss phases and eliminates cross terms as if these sets

of random phases would be completely independent for different particles.

However, in emission processes, such as a-decay, the single-particle wave

functions are not shifted; they all start leaking out at t = 0 when the

radioactive source was prepared by chemical separation. Therefore we must

consider all cases in spite of the inconvenience. For instance, by writing

explicitly (x) - Vno(x) + E ViBr(x) a+i and X(x) = Xno(x) + L xiBr(x)a+i, we

i i
obtain from Eq. (2.5) in which the asterisks are interpreted as crosses

indicating hermitian conjugation, the same result as in Eq. (2.7), by

- ~ -vrr ~ '~ v'* :. %*



interpreting the brackets as vacuum expectation values.

III. DERIVATION OF THE PAIR-CORRELATION FUNCTION FOR FERMIONS

In the case of fermions, the state of two scattered particles emerging from

the same interaction is similar to Eq. (2.1)
ISss,> = (1/2)1/2 jd30jd3n (E,O)X(n,)+s +s,(n) 1>, (3.1)

but now the field operators satisfy anticommutation relations:

l*s(X)4,+s(y) + 4' 5 (y))s(') = (" - y)6s,s', (3.2)

s(x)*s(y) + ,(y)*s(x) = 0, (3.2a)

s(X)*+s , ( y ) + * +s( y )* + s (x) . 0. (3.2b)

The operator of the pair-correlation function is now written in the form

0+ pi x2 x

O Ess, 4'+s (xS)*+s(X2)'s'(X2)-s(X1)" (3.3) "p

Its expectation value in the state given by Eq. (3.1) is calculated with the

help of the matrix elements

•~~~ to iPt (xl) ),+ +(x2)*,(x2)*,(xl)* , () o,

- E-6~ 1-"06(1' -x2) + 6WF~ - xl)6(fl' -x2)]

[6(n -x2) - x1) - 6( x2)6(n " Xi)]; (3.4)

<s io s .> >
= <0

-7 -.& T - . -
a 6 . x)6(n' - xl)(r - x2)6(n - x1); (3.5)

<S-i %ISO>
# 04 t -t . . .$ -- U - U S

1*OI(n')*(W')*t(x1) +(x2)'(x2)4'x1)4'+(0)'(n) 0>

x2(~ X26n xi)d( - x2)6(TI xi). (3.6)

We also obtain three similar expectation values with all spins reversed.

The spin-averaged pair-correlation function is then

A - (1/4)zs,s' <SssSIrt+ o4+ o,1+ Ojsso>

- - -~ I
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_x (14[xI(x2) 2  
-x(xl)* (x2)x(x2) +1&(120xX 1

+ IX(X2 )1210(X'1)12 + lx(xl) 121 ('x 2 )12]

- (1/2)Cx*(x2) #*(X1)O(x1)X(x2) + X*(Xl)O*(x2)#(x2)X(xl)]

- (1/4)[x*(X1)W(x2)k0(x1)X(x2) + X*() W(xwl)*()]. (3.7)

1) If we assume that the wave functions *(x) and X(x) differ only through a

general phase factor, we obtain from Eq. (3.7)

<A> (1/)<jOxj~jj0((3. 7a)

which corresponds to our earlier APSPSWF result2 in the time domain, and which

yields again the fractional spectrum 2cxA/f found in our previous papers. (See

Sec. IV for the definition of ciA.)

2) If, on the other hand, the single-particle wave functions also contain

mutually independent sets of random phases in their energy loss parts, we obtain

from Eq. (3.7)

<A> . <1012><1+12> - (1/2)I<0*(x1)0(x2)l2

-(Ino 12  + Zi IO1BrI12)2 - (1/2)1I~noI +(E I1,OBrI)

+ k0*no(x1) 0no(x2) Ei '* iB(x2,i B(x1) + ccl

0 <1,12>2 - (1/2)<IO(xj) 12j0(x2 )12>.. (3.7b)

Both in the first and the last form above we notice that the Firstterm is

constant, while the second is the familiar APSPSWF. Therefore, this result is

again similar to our previous APSPSWF result1 -2 shown in Eq. (2.6) or (3.7a),



-/2 -0

and yields the same fractional spectrum 2cA/f. However, at small distances we

now obtain something similar to a Fermi hole due to the minus sign in Eq.

(3.7b). The minus sign corresponds to a 1800 phase shift or delay. This means

that the fermions avoid each other at close range. Over large distances, i.e.,

at the low wave numbers significant for 1/f noise, the distribution and'the

spectral density are not affected. If we explictly include the photons into the

final state and multiply *tBr by a photon creation operation akl, we obtain

again exactly the same result shown in Eq. (3.7b). This shows that although the

phase shift caused by the Pauli principle at short distances was not included,

our previous treatment l'5 was correct because it started with exactly the same

product of single-particle wave functions and therefore yielded the same final

result as the present calculation. Whether this result should simply be

iterpreted in terms of frequency beats is a philosophical question; I know it

should. However, while the beats are caused by exactly the same interference of "

each single-particle wave function with itself which we had considered from the

beginning, they occur because the single-particle wave functions are Included as

symmetrized products into the many-particle wave function of the outgoing flux.

The Fermi hole is absent in Eq. (3), because there only the antiparallel spins

contribute.

We finally conclude for fermions as well as for bosons, that both if the

outgoing particle wave functions *(x), X(x), ... , differ only by an arbitrary

general phase factor and if they also have independent sets of phases in their

bremsstrahlung energy loss parts, our previous method of calculating the

autocorrelation function is justified on the basis of the present second-

quantized calculation; see Sec. IV-V for details. All claims to the contrary S

which have been recently voiced, are therefore wrong. We now need to insert the

correct single-particle wave functions explicitly into Eqs. (2.5) and (3.7). i



Before we do this direct calculation, we briefly discuss the connection

between density and current density autocorrelations. The current density

operator in second quantization is

J - (/21m)*+(+)( _ )*(+), (5.6)

where now *( ) and *+(+) are particle field operators, while the same notation

was used earlier1 to designate single particle wave functions which are

operators in the Hilbert space of photons, because the current-carrying

particles were not second-quantized, while the emitted photons present in the

final state were quantized. The operator of the current correlation which

replaces Eq. (2.2) is
Oo - (,MI2m)2*+(,,)++(,2(2 )(2) -1 I) (5.7)

while in Eqs. (2.5) and (3.7) we have to make the substitutions

(tj)'+, (TI/2im)(1i-41) (Zj ) - (%K/m) (Ij)

4(12) +  12im)(12-12)(x2) = (iK/m)( 2) (5.8)

and similar for X(x), while * and X are left formally unaffected. Here we

have used the form of *(x) and X(x) given by Eq. (5.1) or (5.2) which allow only

for very small momentum deviations q << K caused by infraquanta, which can be

always neglected. Therefore, Eqs. (2.5) and (3.7) will only acquire a general

factor (1hK/m) 2 . We conclude that in general

<SOjIS> = (MK/m)2<SIOIS>, (5.9)

i.e., that the current density autocorrelation is proportional to the density

autocorrelation if the single-particle states are close to momentum eigenstates.

The corresponding spectral densities are also proportional, with the same

proportionality factor (IK/m)2 . The fractional autocorrelations, however are

the same for the current, as for the density, because they have the squared



average value in the denominator. The same equality holds for the corresponding

spectra.

Finally, for stngle-particle states which are superpositions of states close

to momentum etgenstates, the above proportionality remains approximately valid,

if we replace the proportionality factor with <(1hK/m)2>, where the average is

over the distribution of K.

-
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IV. DERIVATION OF THE SINGLE-PARTICLE WAVE FUNCTIONS

The derivation of the Schroedinger field will be performed with the

help of the Green's function method similar to the method used in a earlier

calculation by Kroll and Watson 7 , extended to the case of interaction with

all electromagnetic modes of the universee.

It is most convenient to describe the electromagnetic field in terms

of plane waves. The vector potential is taken in the radiation gauge as

A(r,t) = Z k,,(TI2c/L30ok)1/2uk,[ak,1(t)eik 'r + ak,(t)e'Ik'r]. (4.1)

The polarization vectors uk, 1 and uk, a are mutually orthogonal unit vectors

perpendicular to k.

The Schroedinger equation for an electron moving in a vector poten-

tial A and scattering potential V is

(1/2m)[-ihV - eA/c] 2 + VO = i110. (4.2)

A dot has been used to indicate the time derivative. The electromagnetic

field is treated as a classical field at this point. In order to eliminate

the A' term from Eq. (4.2), we write

:exp[ (-i/h)S1t(e 2/2mc2 )A2dt' ] >

Thus, Eq. (4.2) is reduced to

((-ft/2m)7 2 + (iet/mc)A-7 + V] iiD. (4.3)

It is convenient to consider first the influence of a single electromagnetic

mode, i.e. a single term from Eq. (4.1). Therefore, we take A a acos((t+7),

where r is an initial phase constant, and we treat V0 as a perturbation
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source term. The solution for Eq. (4.2) is an incoming plane wave plus

scattered waves, given by the integral equation

Sit,(r,t) : jto - Sd x St dt'GV(r')4 kc(r',t'). (4.4)

Here Ok is the solution of the homogeneous equation, i.e. with V - 0, and

can be written in the form

#le = e1ke'rexp[-(iR/2m)St(kao - 2eko.A/ch)dt]. (4.5)

G is the Green's function which satisfies the equation

[(-h 2 /2m)v 2 + (ieTiA-V/mc) - iM t]G = 8(r-r')8(t-t'). (4.6)

Given A = acos((at + 7), G can be found to be

G = [i/(2x)31N]Sdkeik(r-r')exp(-(it/2m)[k2t - 2ek-asin(wt + 7)/hcw])

x exp[(i1/2m)(k2t' - 2ek.asin(wt + 7)/BcW]. (4.7)

In the first Born approximation we set (P k (r' ,t') = q,(r' ,t') in the in-

tegral present in Eq. (4.4) and obtain for the scattered wave

T = [i/(2x)h]Sd3x'S t dt'V(r')Sd'keik r-r')exp(-(i/2m) 0

[k't - 2ek-asin(wt + r)/ico]) x exp[(itj/2m)(K 2 - kso)t']

x (exptie(ko - k)asin(wt' + r)/2mcwj]elk, ).

Using the relation

e 0 ' ( ' * r = ZJ (Be ' '' r , (4.8)
A.-.

where Js(M) is the nth order Bessel function, we expand the expression con-

tained in curly brackets in Fourier series. Then Eq. (4.4) takes the form

0 k. (r,t) - qh*(r,t) = [-i/(2x)3fi]Sd3x'Stdt'V(rl)d3kek(,-r,)

x exp(-(iMi/2m)[k 2t - 2ekasin(wt+r)hcoJ)
OVYO

x exp((iti/2m)(k2 - k,)t'][Z Jn(.)eI(w t)]elk "r'. (4.9)

After performing the integration over t' we use a contour integration method

for k. Then Eq. (4.9) is reduced to

jl,(r, t) - 4k(r,t) : [-m/(2x)h 2 X J al0)eIat[e Ik(a)r/r]
n~v - M

x exp(A[k2(n)t-2ek(n)asin(4;t +7)thcw]/2m} x Sd'x'e'k(&)r'V(r ')e~k r ' 0

(4.10)



where

/B -e(tk, -'lko).a/mclio = -eQ-a/mci a, (4.11)

and Q is the momentum transfer. In Eq. (4.10) k(n) is defined by

(Mk(n)) 2/2m = (Mko)2/2m - nhw; km = k(n) = k(n)r/r. (4.12)

The total scattered wave can be written as

Os = [-m/(2xz)11r]Z a..4elt(a)rexp{-ih[k2(n)t -2ek(n).asin(( t+r)/ihc&]/2m)

x Vk(Ak Ja(13)eiar, (4.13)

where Vk(a),k = Se-1k(a)r'V(r')eiko'r'dx' is the scattering matrix ele-

ment calculated without consideration of the interaction with the

electromagnetic field oscillators. Gera luticiL to l feld OsvIiorg g ve, a Pas. lrea .

So far the electromagnetic field has not been quantized and was con-

sidered as a classical field. We are interested in the corresponding ex-

pression of the scattered single-particle wave function when the electromag-

netic oscillators are quantized. Therefore we first linearize Eq. (4.13)

with respect to the electromagnetic potential wherever a dependence on f is

present:

Oe = [-m/(27r)If 2r]Vz,k e1Kr-iwt/2exp[ieK-asn(jt + r)/cma)]

(1 + eI(wt-qrt)3/2 - e1'(wt'qtr)g/2)

= (-m/(2x)t 2r]Vs,k e~r-'lst/exp[1 + eiK-asin(wt + Tr)/cm]

(I + e'(&vt-qr )eQ.a/2ffCj) - e-I(&ut-qr't)eQ.a/2mcto)}. (4.14)

Since k : (v/c)q<<q, the r-depedence of the elbtromagnetic potential can be

neglected, as it is,in exp [ieK-asin(wt + f)/cma].

Here we have introduced the notations E = ()2/2m and K: k(0). In the

last form we will neglect the term with sin(wt + 7) that corresponds

Npart 0f.1Aeto a coherent quantum I/f noise contribution which has been considered else-

where before", 1, because this term can be considered constant of negli-

gible magnitude in the calculation of equal time spatial correlations. We

also neglected the small difference between k(1) : K - a /vK and K in j and
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Vk(t),k, We conclude that the quantization of the electromagnetic field

transforms *s into an operator in the photon Hilbert space

(r,t) = (C/r)emr-I9I/5(1 - X k.ibs(k,l)expi(-wt + qr - ri)ak ,

+ X k,ib(k,l)expi(at - qr + Ti)a+k,1). (4.15)

This is the form of the single-particle wave functions which are used in the

present paper with or without the photons included. Here we have introduced

b(k,1) = (1/2)o and the constant C which designates the factor in front, and a

sum which includes all electromagnetic modes with annihilation operators a ,1.

In the space of the electron states *(r,t) is just a single-particle wave

function. We have denoted by q the small decrease In the particle momentum

required by Eq. (4.12). We have q = (K/E)-hw = ck/v - w/v, with

(L/2x)3-4x.Z i<1 b(k,l)I 2>k2dk = e2Q'a2/4m2cTRT2 2.2k2 dw/3c = aAdii/w, (4.16)

where a = e'/4ic = 1/137, A = (2Q2/3mn2c2), and where < > is an angular

average. We have considered the spontaneous emission caused by vacuum fluc-

tuations only, yielding fol* the amplitude a ,

(jvkill)=2.'iC/7d3 (4.17)

The annihilation part is included in Eq. (4.15), but does not contribute to

the quantum I/f noise on the background of the electromagnetic vacuum. If

the calculation is performed on the thermal radiation background, however,

we get a white noise contribution added to the quantum I/f noise which

remains the same0. Here we have performed the transition from just one

electromagnetic mode to the general case with all electromagnetic modes ad-

hoc, but in our previous papers this transition was presented in detail.

.1111 11F- ~ * - ',
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In Eq. (4.15) we notice the presence of the random phases ri which

where introduced as initial phases of the electromagnetic oscillators, and

which are independent for each electromagnetic mode i (of given polarization

I and wave vector k) of the universe. Since the various scattered particles

are independent of each other and of the electromagnetic modes, we have to

consider the set of random phases ri different and independent in the wave

function of each particle. 5ee lfa tAe Jisdss~i' befre Ef,'(4L0) and after 0 )1)

V. CALCULATION OF THE PAIR-CORRELATION FUNCTIONS AND

OF THE CURRENT AUTOC1RREIATION

In Sec. IV we have determined the single-particle wave functions

in the form, valid at t = 0,

j(x,t) (C/x)exp(iKx)[1 + Z k.b(k,l)exp(-iqx)], (5.1)

or, if the photons emitted in the bremsstrahlung process are included in

second quantization,

6(x,t) = (C/x)exp(iKx)[1 + I ,jb(k)exp(-iqx)a'kij, (5.2)

Substituting these expressions into the calculated expectation values in Eq.

(3.7), we obtain for the case of fermions

A(x,, x:) = (C'C/XX2) 2 (1/2 + I ki I b(k,l) I '[2-cosq(x, - x,)]

+. k*i i b(k,l) J 2J b(k',l') 2 *[1 -(1/2)cos(q -q')(xi - x2)]). (5.3) •

Note that if Eq. (5.2) is substituted, the expectation on the electromag-
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netic vacuum state is calculated. If the thermal radiation background is

also taken into acount, a small white noise term is obtained in addition to

the 1/f noiseg. The constant part is the squared expectation value of the

concentration of particles. Dividing the variable part by this constant

part,we obtain the fractional spectral density of the particle concentration

n, or current density j (with L3 being the volume of the normalization box

considered)

S.(k)dk/n2 = Sj(k)dk/j2 = 2Z 1<<1 b(k,l)j 2>>(L/2x)3 4;,kadk

/(1 + 4 Z,aI b(k,l) I 2 + 2Z yt.,, I b(k,1) 1 21 b(k',') 1 2)

2Z 1(<l b(k,l)j >>(k2/2x2)L3dk = 2aAdk/k = Sj(f)df/j= 2aAdf/f, (5.4)

which is in agreement with our previous results, and which also includes a

180 phase shift due to the exclusion principle which is important only at

short distances between the particles. In the final form we have trans-

formed to the frequency f.

The expression of b(k,l) used in Eq. (5.4) was derived in Sec. IV.

It is the well known expression of the bremsstrahlung amplitude in any scat-

tering process

b(k,l) = - (e/m w)(T1/&L)'/ 2 ApAi, (5.4a)

where A, is the polarization vector of the mode, and A p is the momentum

change of the particles in the scattering process considered. In Eq. (5.4)

an average << >> over the angular variables in k and a summation over

photon polarizations were performed, leading to the usual definition of the

quantum 1/f noise coefficient, also known as the nonrelativistic form of the

infrared exponent defined in quantum electrodynamics

aA = (2a/3 r)(A p/mc)2 , (5.4b)

with a being Sommerfeld's fine structure constant a = e2/c = 1/137.



In the case of bosons we substitute Eq. (5.1) or (5.2) into Eq.

(2.Sb) and obtain

A(xi.x2) = 2 + 2Z i,il b(k,1)I 2[1 + cosq(xi - x2)]

+ z iti ,- I b(k,1) I 21 b(k',1')l Il1 + cos(q - q')(xa - xa)];

S.(k)dk/(n)2 = Sj(k)dk/(j)2 = . <<l b(k,1)l 2)s>(L/2x)3 4xkadk

= aAdk/k = aAdf/f. (5.5)

Here at short distances we notice an increase of A(xi.x2). The fractional

spectral density is reduced by factor of two compared to the case of fer- S

mions. Both results generalize our previous results to the case of short

distances and prove the existence of the conventional quantum 1/f effect in

second quantization, even if the photons are included into the final state

(which is to be avoided if the electromagnetic field is included in the

Hamiltonian as an external field, as we did in earlier papers).

The transition from the wave number spectrum to a frequency spectrum

in the last form Eqs. (5.4) and (5.5) is based on the equivalence of the

density distribution along the outgoing rays with the time-dependence in a %
S

fixed point along the flux of particles which all move with the speed v.

The coordinate x along the ray and the time t are in this case equivalent

variables, and therefore the wave number k and the frequency f are also

equivalent variables for the spectral density. We can therefore write 2sTf

vq = ck and S(k)dk = S(f)df, which justifies the last form of Eqs. (5.4) and

(5.5). In order to check the validity of this procedure, we will now per-

form a direct calculation of the pair-correlation function in time and

space.

VAN.
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VI. DERIVATION OF THE PAIR-CORRELATION FUNCTION IN TIME AND SPACE

Working in the Heisenberg representation as above, we can generalize

the derivation presented above by including two different times in the

operator of the pair-correlation, although this requires more calculation.

To simplify the integrals, we consider again the stata of two outgoing fer-

mions very far from the place where they have independently suffered the

same interaction, so that the outgoing spherical waves can be approximated

by plane waves. Starting therefore with plane waves similar to the spheri-

cal waves used in Eq. (3.1), with q = qK/K = ckK/Kv and q' = ck'K/Kv, we ob-

tain again the pair-correlation function in the form

A(xi, ts; x,, t,) = 1/2Sd2fd37di 3'd37'

(exp(-iF,') + Z k-,Uj,(k',s')exp[-i(K-q')?']ak )..

(exp(-iKg') + Z k,-b*(k,s)exp[-i(K-q)' ]aks.)

(exp(iKI) + 2: k,@b(k,s)exp[i(K-q)E]aka,)

(exp(iM7) + Z k,,u'B(k',s')exp[i(K-q')7]a*k,,s,)

(1/4)j ss,<ssI 0 + 0 + 0 + ; St 'I' s.,,. >. 03, )

The operator of the pair-correlation function now contains two consecutive

times. The creation and annihilation operators for particles obey anticom-

mutation relations similar to Eqs. (3.2)-(3.2b). Using these operators, the

field operators can be expanded in terms of plane waves

Os(r,t) = V'/2Z # expi(pr-wt)cps, 04s(r,t) : V-1/2Z r expi(-pr+oat)C*Ps(6.2)

which also contain their time dependence, as needed for the operator of the

pair correlation function in the Heisenberg representation. This operator
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has an expectation value which can be written, for spin up only, in the form

<SO 1 I OPxa3  ti, X2, ta) I SoIv

'A'

<01I cm#c..c*, C+ c) C C#0c+01 0 >

+( h t - t-,x((iMt )[(,72 -(a-)'t

0(1 +Z m.,Sl(k2)')xi2 'a lq'K-q/)t/)a'

1 4E k' b2-ex()jiehxpi'x- xa)/ -I'( - '/2)(i-a/J*

-(X hi b' ) I -(2xpi tz x) -'qK-/)t t)N

*Z <0(1 bk0(k')exj 2exiq q'(x - X) iKl -) ta-)I

( 2 -q+X t -ta)/xp~q2M] (6.4)q2t2Ml

r .'

* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~. 1 2kIbk) ep~tx x2 t-( q/)t t)M

+1~~~~~~ ~ ~ ~ ~ ~ 5... b5) ep~~i-i qK-/)t t)



The first form of this result Proves the Presence. with t1 , f

four single-Particle functions (APSPSWF combination) in A

In a similar way the expectation values corresponding to Eqs. (3.5) and

(3.6) are calculated and integrated with respect to C, r), 9' and r;'. Put-

ting together the terms for all spin orientations as before, we finally ob-

tain the desired pair correlation function in the form

A(xi,tl;x2,t:) =1/2 + X~ b(k,l) 1 2 (2 - cosqCxt-x2 -v' (ti-t 2 )]

*Z -~ia I b(k,l1) 1 2 1 b(k',l1) 1 2(l -(1/2)cos(q-q').(xx-xa -v''(t 1 -t 2 )]);(6.5)

y's V(1 -a]2K) = v(1-e/4E) =v; v''= v(1 -(q+q')/2K] =v'[i -(e+e')/4E1 = v.

The approximtions v' = v and v' v are Justified because the soft photon

energy C£ 4 -10-1 eV for 1Hz is negligible compared to the energy E of the

particles which may be of the order of 1eV. This result directly proves our

heuristic generalization of Eq. (5.4) to the case of different times in the

pair-correlation function. The extension to the case of bosons is trivial.

VII.* CS-OREATIONS AND SPECMFR

In practical calculations of quantum 1/f noise in condensed atter

and electronic devices we often need the cross-correlation of the differen-

tial scattering cross sections at different angles. This is in fact the

cross-correlation of the outgoing current densities scattered into different%

directions, with different incoming wave vectors Ki and K2 considered. If

we restrict ourselves again to spatial correlations for simplicity, we need

to examine the cross-correlation of the probability densities in the scat-

tered wave at various distances from the scattering center and in various0

directions.

For bosons we start from Eq. (2.5) and consider q6(x) and x(x) as in



- 25- -e,

Eq. (5.2), but different from edCh other:

1

i(x,t) = (C/x)exp(iKx)[1 + X k,ib(k)exp(-iqlx)ak,I], (7.1)

X(x,t) = (C/x)exp(iK2x)[1 + Z k, A,(k)exp(-iqx)a1, ], (7.2)

where now b corresponds to the momentum change K' - Ki, and f8 corresponds to

the momentum change K" - Ka of the second particle, in addition of having a

independent random phase different from that in b, for each k, due to the

different initial phases of the electromagnetic oscillators registered by

the second particle. As in Eq. (2.5), we obtain now

A(K,,Ka,K',IK';xi,x 2 ) = <SI O S> = (1/2)(I x(xa)I 21 (x)I a .

+ Z*(X)$(x,)(2)4(Xl)+*(X2)4(XI)Z(X)6(X) +I X(X,) 2 4O(xI) 1 2)

= [1 +1 1'I j(k,l) 1 2111 + X , I b(k,l) 1 2]

+ (1/2)exp[iK' (x,-xI) + iK(x,-x,)1[1 + Z i,. I 8(k,l) I aexp-iq(x2-x)],

[1 + Z k, I b(k,l) 1 2expiq(xt-x,)] + [I42].

= [+ it,, I (k,l) 1 2](1 + X ,I b(k,l) 1 2] + cos(K'-K")(x,-x2)

+ 2: ko t I(k,l) I 2cos[(K'-KI)(x2-xi) + q(xi-x2)]

+ X k.i b(k,l) I 2COs[(K'-K")(x2-x,) - q(xi-xz)]

+ 1 k'' i.1 6(k,l) I 21 b(k',l') I 2cos(K'-K"+qI-q)(x2-x2). (7.3)

Taking into account that the momentum changes caused by infraquanta are very

small (q<«KI-K,), we now smooth this rapidly oscillating correlation by

averaging over short distances of the order 1/(Kl-K2) and get zero, except

for K1 = K2 , which still allows each of the incoming directions and outgoing

directions to be different

A(K,,K,,K',K";x,,x2 ) = <SI 01 S> 2 (l+X 1,' I(k,l) I 21][+Z ,.,I b(k,l) I 2]

+ (1 + I I I (k,l)) I 2 + I b(k,l) I 2]cos[q(xi-xa) Wa , "

~ ,(~*.'. /? ~ V' -,
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+ X k-,n -I A(k,l) 1 21 b(k',1') I 2cos(q-q')(x,-x2)K; KS. (7.4)

This result indicates that only particles of the same energy have quantum

1/f noise cross-correlations, and groups of different energy yield indepen-

dent quantum 1/f noise, as was anticipated empirically by K.leinpenninglo.

Our result in Eq. (7.4) differs somewhat from a heuristic generalization of

the basic quantum 1/f noise formula used in a previous papers.

For fermions we start from Eq. (3.7) and obtain

A(KK,Kz,K',r';xL,x 2 ) = (1/2)[ x(xi) 1 21 (x)1 2 + (1*--P2)]

-(1/4)[ *(xj)O(xa)x(xa)4(xj) + (1"-a-2)]

X [1 +Z ,i I(k,l) 1 ]11 + Z k,I I b(kl) 2] - (1/2)cos[(K'-K-)(x1 -x,)]

-(1/2)Z kn[ I (k,l) 2 + I b(k,l) i 2 ]cos[(K'-K")(xz-x,) + q(x,-x2)]

1)' (k,l)[ 21 b(k',l')l 2cos(K'-K"+q'-q)(xs-x2). (7.5)

Applying again the smoothing operation we obtain now

A(K,,K 2,K',K";x 1 ,x 2 ) [1+2 k,I i (k,l) I 2 ][+Z k, I b(k,l) 1 2]

.-c12)(i +. .k,[ I A(k,l)) 2 + I b(k,l) I 2]cos[q(xi-x2)]}.. _

-(1/2)X kk,, ,,I A(k,l). 21 b(k',l') 2cos(q-q')(xI.-x.)&gs ,1" (7.6)

For elastic scattering we have K' = K1 and K" and K2 , provided the scattering

center is fixed or very massive (e.g. a crystal). We include the infrared
, . '. '

radiative corrections this time.

Using Eq. (4.16), the angular integrations can be performed in Eq. (7.4).

We also apply the relations dk/k = df/f and k/ko a f/fo and obtain

p.--p
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F F A d
Ab(.IK,2 K', K",X1 ,X2 ) - [1 + A1 J (f/fo),Aldf/fJrl + -A2 J (f/fo) 2df/f)

fo fo

+ 11 + aj [AL(f/fo )GA1 + A2 (f/fo)"A2)]cosq(xl-x 2)(df/f) (7.7)

fo

+ jiAIA 2 J F (f/fo)%l(df/f) ( (f/f )OA2(df/fI)cOs(q'q')(xl.x2)6
fo 

0

with Al - 2K12( K'-1) 2/3mm 2c2 and A2 - 21f2(K "-K2 )
2/3m 2c2 for bosons. The lower

frequency limit fo is the resolution limit given by the reciprocal duration of

the noise measurement. The upper limit F is very high, close to the energy of.

the scattered particles, divided by Planck's constant. From Eq. (7.6) we obtain

AfK ,- El + A fo) L1df/f][1 + cLA2 Jf
fo fo

F

-(1/2)J1 + aJ [Al(f/fo )aAl + A2(flfo)62]cosq(xl-x2)(df/f)16K,,K" (7.8)

-(22/2)A1A2 J F(f)fo)A 1 (df/f) 2(f/fo)OA2(df'/f' Cos(q-q*)(xl-x2)16K,Ku ,

fo 0

for fermions. The infrared radiative correction factors (f/fo)oA were

calculated elsewhere and can be set - 1 for all practical cases. Neglecting the

"noise of noise" term proportional to ci2 , and using the Wiener-Khintchine

theorem, we obtain the corresponding cross-spectral densities of the scattering

rate fluctuations aw+ + > leading from K1 to K', and aw. +,> from K2 toKIK. 'K 2 ,K'

SAw(1,K2,K' ,K")b = (/2f)[Al(f/fo)Af/f o)f/fo) A 2]<w 1 + ><W+ +,,>6 (7.9)
AW+92+0'A+2f ) KJOKI K2,K' K ,K .

for bosons, the factor in front being /INKef in. general (N-2 here),and

SAw(K1,KK' ,K")f - ( 2/f)[A1(f/f°)Al+A2(flf°),A2]<wK + ,> 6 "' ,K", (7.10)

for fermions, the factor in front being cL/(NK-I)f now (see Sec. VIII).
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VIII. PAIR-CORRELATION FUNCTION FOR N OUTGOING PARTICLES

So far we have considered only the simplest case of two

particles present in the outgoing state, which is the minimal
S

number that allows for correlations between different particles

to be defined. Quantum i/f noise is the manifestation of long-

range correlations between particles, causing them to be bunched

and to be subject to superpoissonian statistics. Therefore, we

are interested in these correlations which reveal themselves in

the pair-correlation function, also known as the two-particle

distribution function. 5

In general, there will be more than two particles in the

outgoing state, which are observed in order to determine the

scattered current. In calculating the pair-correlation function.

we should therefore consider the general case in which N scat-

tered particles are simultaneously under observation in the out-

going state during the measurement of the cross section. This

is what we will try to do in tis section.

Similar to the case of two particles in Eq. (2.1). the r

state of N scattered particles can be written in the form

N

lo

S> (N!)-1/2fl i~ jjI(..1 0> n iSd3%ei 45 i) So%. (8.1)
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Here we have denoted by qi (fi) the exact single-particle wave fmction of

the particle i, where both the interaction with the scattering center and

the interaction the electromagnetic field modes are taken into account. For

bosons the operator of the pair-correlation is given by Eq. (3.3), and by

using the permutation relations Eqs. (3.2)-(3.2b), we obtain

N!<So 01 So> = <0 {I H ()l...0(7) (x)0+ (x,) (x2 ) (x)6( (1))... 6+(CN)J 0>

= j 0 l(,-)A(,7 -x,)('(C.-xa) X-x )(,-_ 1 )6-8(), X8) 0>
a(7 xl 8 /7 -x: 8 % a 4zi)& MC--x2

-X~ II 5 ('-,xI'j-.-a), (8.2)

where the sum over permutations runs over all permutations of the N-2 in-

dices J. This allows us to calculate the complete matrix element

<S[I 01 3> =[1IN(N-1)J] X X d2,-A jd~jjd~fejd~e,

/ \
N

= (1 + Zt, I b(k,l) I 2]-2(N(N-1) + [(N-1)/N][2Z ..iZ k, i b.(k,l) 2

N " ,_

+ 22 ., I , I be(k,l) I 'cosq(x1-xa)])

[ + Z , b(k,l) 2]- 2(N(N-1) + 2(N-1)Z ,aI b(k,l) 

+ Z k,11 b(k,l) l 2cosq(x&-x:)]). (8.3)

Dividing the term dependent on x -xa by the constant term, and neglecting

terms of higher order than I b(k,l) i 2, we obtain the fractional spectrum
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density of the quantum 1/f fluctuations in the concentration c of particles,

in the current density J, and in the physical cross section a

Sj(f)/<j>2 = 2aA/Nf. (8.4)

In Eq. (8.3) we have used the form of the single-particle wave functions

given by Eq. (5.1) or (5.2), and in Eq. (8.4) we have used the expression of

the bremsstrahlung amplitude given by Eq. (4.16). Our calculation in Eq.

(8.3) and the result in Eq. (8.4) show how the independent sets of phases in S

the bremsstrahlung energy loss part of the single-particle wave functions

lead to independent additive quantum 1/f spectral contributions from each of

the scattered particles, and to the 1/N factor in the fractional spectral

density shown in Eq. (8.4). This result and the foregoing calculation are

in agreement with our previous results'-$ and calculations, and perfectly

justify our previous use of single-particle wave functions with subsequent

introduction of the 1/N factor on the basis of the independence of 1/f noise

oontributions from different carriers.

In the case of fermions the calculation is similar, except for the

use of anticcmmutators for the fermion field operators. In order to em-

phasize the independence of our results on the representation used, and to

show directly how the calculations presented in this paper can be performed

without second quantization, we give here the direct calculation in terms of

a Slater determinant for the state of N scattered fermions

952(rt) 012(rO) ..... Oi(ri) .

....... ).. ......... ...

4'ii(r,) Oipi(r ) ..... 4iw(rw) (8.5)



Here r combines the position vector x and the spin variable s for each of

the particles. The pair-correlation function is obtained by integrating

with respect to the coordinates of all but two of the fermions

A(r,,r:) = jd'r3 ... d'rx< I th 1 ... N(r,...rio) 1 2>% (8.6)

Here the integrals also include summations over the spins, and the expecta-

tion value is with respect to the phases present in the bremsstrahlung parts

of the wave functions and, if the emitted photons are included in the final

state, the expectation value is also done over the vacuum of the photons.

Assuming orthonoruLlity of the functions Oi ,... OI, we obtain

A(r,,ra) = [4/(N-l)]Z,.,<[ Im(r1l4'lr,) - 4.(rs)lOn(ri) 1>. (8.7)

To display the spin variables explicitly, we write 4a(r) = x.(x) l s> and get

Aus-(xi,x2) = [1/N(N-I)l *,.i,<[zm'(x,)<SI (3(x,)<s' (8.8)

- X.(X2)<s' I zs'(x,)<sl I [X.(xI)Is) X(x2)Is'> - X.(x2)Is'> X.(XI)IS) >

[1/N(N-I)II 8,0-1<[i IX(lx)[ 21 ZX(X2)1 2 + I XM(X2)[ 21 ZM(XI)i 2

- X'(XI).(X2) I <s S'> I XZBS(X,)XB(XI) - (xx--X2)]>.

Here the simbol (xr--" x2) designates the immediately preceeding term. Con-

sidering 
all spin 

orientations, 
we obtain

Alxi,,x) =A + At = [1I NIN-1I ..,mu<[41 x.I 21 z.I 2



- *(Xl) *n(X)XM(X2)Xn(X) - (xI + x2)]> (form 1)

C ICI 4/x2N(N-l)]JN 2El+rri jb(k,1) 12)2
N/2 2.

- 2 z 1 exp[tKm(Xl-x2)J11 + .,11bm(k,1)1 2 exp~iqm(x1-x2)]

N/2
• exp(-tKn(xl-x2)]1) + EVsisIbn(k",l')I2 expliqn(x1-x2)] (form 2)n-1

s [lIC 4/x2(N-1)]tN[1 + LE,lJb(k,1)I 232
N /2 _ 'O- (2/N) E [1 + 2Er,,lbn(k,1)I 2cosqn(xl-x2)

nfl

+ E. Ibn(k 11)Ilbn(k',1')I 2cos(qn-q'n)Xl-X2)].
k,1 ;k ,1

g lCI 4/x2(N-1)]tNE1 + 1E,1ib(k,1)I 2)2 -1 -2ELtb(k,1)1 2cosq(x1 -xz)l. (8.9)

This form of the pair-correlation function includes the 1/N factor which

multiplies the variable (noise) part. The crucial point in the derivation

of the 1/N factor was a elimination of the rapidly oscillating terms exp(Ka-

Kn)(xi-xt) with K. 0 K. present in the second form of Eq. (8.9) above, an

elimination indicated through the approximation sign connecting the second

form to the third form above. Indeed, since K. differs from Ka by much more

then the momentum change corresponding to the emission of a infraquantum,

these terms will have a very fast oscillation, and will not yield any low

frequency noise. Since they are also small in magnitude, they are negli-

gible. This provides the important reduction of the noise term by a factor

N. In the last form of Eq. (8.8) the first two terms are constant and

large, and do not yield any rapid oscillations which would justify elimina-

tion of any cross terms.

In Eq. (8.9) we have used again the form of the single-particle wave

functions given in Eq. (5.1) or (5.2), with independent sets of phases

-~- - - ~1~- - - - - - - -~ v -"-~~ ~ -Y-p -
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present in the bremastrahlung energy loss parts of each particle. Had we

used a random time-shift in each of the single-particle wave functions, i.e. S

just a random initial time constant, or, equivalently, a random space-shift-

constant, all results would have been exactly the same. In fact, the random

shift should better describe the initial Poisson distribution of the incom-

ing particles which are scattered. As we have seen in Sec. IV, the random

phase set in the bremsstrahlung energy loss parts is the set of random ini-

tial phases of the electromagnetic field oscillators. Therefore it should S

come in the same way for all particles. However, the random shift will

eliminate expectations of the cross products bn2(k,l)bs(k,l) with m * n

just as the sets of random phases used by us did; if p is for instance a

random space shift, these cross terms yield contributions to the pair-

correlation function of the form (I b(k,l) I 2 cosq(xi-x2 + p)> = 0, where

the average is with respect to p. We present this observation here as anaf-

terthought, because the sets of random phases generated by a shift in time

or space will appear to be random, but will still contain some correlations.

The point we make here is that these correlations have no effect on our cal-

culations, so we can continue to use random phases for our purpose. There

may be, of course, some differences in higher-order correlations which we do

not consider here.

In the last form of Eq. (8.9) we have neglected the higher-order

term. Using Eq. (4.16), we can write the pair-correlation function for fer- 4

mions in the form

A(xl,x 2 ) (ICI 4 /x 2 )jl + [2/(N-1)]ZE,1jb(Z,1)I 2 [N(±) cosq(x1-x2 ))1. (8.10)

uividing again the variable part by the constant term, and neglecting small

constant terms, we obtain for the fractional spectral density of the fermion



current and cross section fluctuations

Sj(k)dk/j2 - 2.Adk/k(N-l) -Sj(f)df/j 2 - 2.Adf/f (N-I-). (8.11)

IX. DISCUSSION

As we have seen in Eqs. (2.5a) and (2.5b) the second-quantized cal-

culation of the pair-correlation function for bosons has yielded just the

autocorrelation of the single-particle probability density which we had used

in the initial puxblications 1. For fermions the same result was obtained

with a minus sign which corresponds to a 180' phase shift. The latter was

interpreted as the result of the Pauli exclusion principle which prohibits

the very close location of two identical fernions of the sam spin.

However, this affects the pair-correlation function only at very smll rela-

tive distances of the particles. For the larger distances and lower

frequencies or wave numbers important for 1/f noise, this difference, which

appears in the case of fermions, is negligible. We conclude that the simple

autocorrelation function calculated for the single-particle probability den-

sity in earlier papers on quantum 1/f noise is required by any second-

quantized calculation which takes into account the quantum exchange between

identical particles automtically. However, there is nothing special about

the second quantization beyond this automatism and its neatness; the same

results are obtained also without it, by properly syimetrizing the wave

functions, as we have seen directly in Sec. VIII.. Furt~irmor, quaatd.~m t/f

noise was also deriveod w'th out the APSPSWF.~
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At first sight the autocorrelation of the single-particle probability

density function can not be considered as the expectation value of an ob-

servable quantity in agreement with the principles of quantum mechanics, be-

cause it is of fourth order with respect to the wave function. However, as

we have seen, this is required by a correct calculation in second quatiza-

tion. To explain the fourth-order dependence of the pair-correlation func-

tion on the wave function without using the method of second quantization,

we mention that the nonuniformity of the distribution of the outgoing par-

ticles is described by the two-particle wave function, which in turn is a

properly symmetrized or antisynmietrized product of two single-particle wave

functions. Taking the module squared of this two-particle wave functionwe

obtain the probability dois-ty of the relative positions of the par-

ticles, or the pair-correlation function, which therefore will be of fourth-

order in terms of the single-particle wave functions. This fourth-order de-

pendence which was present in all publications on quantum I/f noise'-', is

therefore in agreement with the principles of quantum mechanics, and is jus-

tified by the detailed many-particle calculation, in spite of the

acrimonious criticism it has recieved. We have also provided for the first

time in this paper a forml derivation both of the quantum 1/f cross cor-

relations and of the 1/N factor of the empirical Hooge relations, in perfect

agreement with the previously introduced 1/N factor'-s.

In conclusion, we have shown how the method of second quantization

can be applied to derive the pair-correlation function of the conventional

quantum I/f effect in space and in time. Both the pair-correlation function

and the power spectral density are similar to the previously published ex-

pressions based on more elementary derivations. Rather than contradicting

0the existence of quantu 1/f noise, the second quantization method confirms 

the quanttu 1/f effect in a brilliant way, and convincingly justifies my
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previous use of four single-particle wave functions in order to describe the

self-interference of the particle fields, on the basis of quantum exchange

effects between identical particles. S

Finally, we mention that the inclusion of the soft photons into the

final state is not required, if the electromagnetic field modes are not part

of the system studied, but are considered external, being included as a

time-dependent external force field in the Hamiltonian. This external field

description'-@ involves a time-dependent Hamiltonian and a formal lack of

energy conservation, but is well suited for the derivation of quantum 1/f

noise and of most other electrophysical and electronics problems, as I have

pointed out earlier. The present paper shows that the quantum 1/f effect

can also be derived in the language of second quantization, with the ex- .

plicit inclusion of the emitted bremsstrahlung photons into the final state.

The equivalence of the wave number spectrum with the frequency

spectrum was proven here by neglecting coherent state quantum 1/f noise,

which was discussed elsewhere*1 ,12. Indeed, if the coherent state quantum

1/f noise is included, fluctuations caused by virtual photons in the final

state must be included. We recall that coherent quantum 1/f noise is caused

by the energy uncertainty introduced by the coherent state of the

electromagnetic field of a physical charged particle. Both coherent and in-

coherent quantum 1/f noise can be derived in the interaction picture. In

the interaction picture coherent quantum 1/f noise is obtained from diagrams

which do not involve scattering of the particles, while the conventional (or

incoherent) quantum 1/f noise considered in this paper arises from diagram

of scattering with the simultaneous emission of photons. We have not in-

cluded coherent quantum 1/f noise in our calculation here, because we have

considered only the noise in the final state long after the scattering

process, with the coupling to the electromagnetic field disconnected, and

," g.
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with the Heisenberg field operators 40(r,t) in free motion. Without this

restriction, the quantum 1/f noise spectrum in frequencies would have been

larger than the wave number spectrum. However, in very small electronic

devices only conventional quantum 1/f noise seems to be presentli.

ACKNOWLEDGMENT

The author would like to acknowledge the excellent hospitality of the

Tokyo Institute of Technology where he had a visiting appointment for the

winter semester of the 1986-1987 academic year. This work was supported by

the Japan Society for the Promotion of Science, by A FSR, an d byARO.

'X. REFERENCES

1) P.H. Handel, Phys. Rev. Letters 34, 1492, 1495 (1975).

2) P.H. Handel, Phys. Rev. A22, 745-757 (1980).

3) T. Sherif, and P.H. Handel, Phys. Rev. A26, 596-602 (1982).

4) P.H. Handel, and D. Wolf, Phys. Rev. A26, 3727-31 (1982).

5) G.S. Kousik, C.M. Van Vliet, G. Bosman, and P.H. Handel, Advances in

Physics 34, 663-702 (1986).

6) See, e.g., G. Baym, Lectures on quantum Mechanics, W.A. Benjamin, Reading

Mass. (1976).

7) N.M. Kroll and K.M. Watson, Phys. Rev. A8, 804 (1973).

8) P.H. Handel and T. Sherif, Proc. VII Int. Conf. on Noise in Physical Sys-

tems and III Int. Conf. on I/f Noise, Montpellier, May 17-20, 1983, M.

Savelli, G. Lecoy and J.P. Nougier Eds., North-Holland Publ. Co., 109-112

(1983).

9) P.H. Handel, Proc. II Int. Symp. on I/f Noise, Orlando (FL) 1980, K.M.

Van Vliet Editor, University of Florida-Gainesville Press, 96.

10) T.G. Klinpenning, Physics 894 , 141 (1978).

V7i'>



-38-

11) P.H. Handel. Proc. VII Int. Conf. on Noise in Physical Systems and

III Int. Conf. on 1/f Noise. Montpellier. May 17-20. 1983. M. Savelli,

G. Lecoy and J.P. Nougier Eds.. North Holland Publ. Co.. 97-100.

12) P.H. Handel. Proc. VIII Int. Conf. on Noise in Physical Systems

and IV Int. Conf. on 1/f Noise. Rome. Italy. September 1985. A. D'Ami-

Co and P. Mazetti Eds.,North Holland Publ. Co.. 465-468.

13) T.M. Nieuwenhuizen. D. Frenkel and N.G. van Kampen, Phys. Rev. A35

2750 (1987).

14) Q. Peng. A. Birbas, and A. van der Ziel, Proc. IX Int. Conf. on

Noise in Physical Systems. Montreal, Canada, May 1987, C.M. Van Vliet

Editor. World Scientific Publ. Co., Singapore (1987); A. van der Ziel,

"Unified presentation of 1/f noise in electronic devices - Fundamental

1/f noise sources". Proc. IEEE. in press; A. van der Ziel. "Semiclas-

sical derivation of Handel's expression for the Hooge parameter". J.

Appl. Physics, in press: A. van der Ziel,"Noise in solid state devices

and circuits". Wiley-Interscience, New York 1986. Ch. 11.

15) D.R. Yennie. S.C. Frautschi and H. Suura, Ann. Phys. 13. 379(1961)

16) V. Chung, Phys. Rev. 140B. 1110(1965).

17) J.D. Dollard. J. Math. Phys. 5. 729(1964).

18) P.P. Kulish and L.D. Faddeev. Theor. Math. Phys. 4. 745(1971).

or Teor. Matem. Fiz. 4. 153(1970) in Russian original.

19) D. Zwanziger. Phys. Rev. D7. 1082(1973); Phys. Rev. Lett. 30. 934

(1973); Phys. Rev. Dl. 3481 and 3504(1975): see also J.M. Jauch and F.

Rohrlich. "The theory of photons and electrons", Springer 1976. S4.

20) P.H. Handel."Effect of a finite mean free path on quantum 1/f noi-

se. Proc. IX Int. Conf. on Noise in Physical Systems. Montreal. Canada.

May 1987. C.M. Van Vliet Editor. World Scientific Publ. Co.. Singapore

(1987).



-39-

APPENDIX I

THE SINGLE-PARTICLE WAVE FUNCTIONS

1. Introduction _

The single-particle wavefunctions used in this paper make sense physically

and were first introduced in 1975 on physical grounds1. The objective of this

appendix is to show how they can be derived formally. The single-particle wave

functions were derived in Sec. IV by treating the electromagnetic field

classically, and by writing the final result in terms of photon creation and

annihilation operators. This last step implies the correspondence principle.

A more rigorous derivation should follow perturbation theory, e.g. the

calculation of Yennie, Frautschi and Suura 15 reformulated by Chung 16 in order to

provide a scattering matrix element free of infrared divergences. The

reformulation by Chung shows that the price we have to pay for a finite matrix

element is a more complicated set of incoming and outgoing states describing the

scattered particles, with the inclusion of a coherent state of the r

electromagnetic field Into the notion of charged particle. This new picture was

first suggested by Dollard 17 in the language of nonrelativistic quantum

mechanics, and was successfully generalized to the relativistic case by Kulish

and Faddeev I1, and by Zwanziger19 . This new picture is intermediary, between

the usual Heisenberg picture and the usual interaction picture, because the .

offending (long-range) part of the electromagnetic interaction has now been

included into the unperturbed hamiltonian.

Following Chung 16 , we obtain a finite matrix element by writing the initial

state of a charged particle involved in a scattering process, with initial •

4-momentum pi and final 4-momentum pf, in the form

I >i u expl-(1/2)Zk,ISi W(k)1 2 1

expI£k,t SLi (k)e(-)(k)ak(1)+1 *(pi ) >



() 12)Li - (1/2)Ek,1ISi Alk)1211 + Ek,x Sj (k)e(L)(k)ak(t)+J I*(p)>, (A.)

where the summations over k can be transformed in intergrals by multiplication S
with (L/2r)3 as in Eq. (5.4), and where

S1  (k) " Je/2(2ir)3koJpie(1/kpi (AI.2)

is a function which depends on the momentum Pi of the incoming particle of

charge e. The state j(pi)> includes the bare particle and the vacuum on which

the creation operates ak act. Here e()(k) is the polarization 4-vector of

the mode kx. The physical charged particle defined by the first form of Eq. S

(A1.1) contains the bare particle and its field which is in a coherent state,

with an indefinite number of photons in each mode and therefore with energy and

momentum which are not sharp, i.e., not well defined. The last form of (Eq.

A1.1) is only an approximation obtained by expanding the exponentials. The fzrm

of Si(t)(k) given by Eq. (A1.2) is correct only in the limit kO of interest for

us.

The final state is obtained by replacing pi with pf in Eqs. (A1.1) and

(A1.2). The photon is assumed to have a finite mass x which is allowed to

approach zero at the end of the calculation. "

It is easy to verify that if the initial and final particle states are

chosen as shown in Eqs. (A1.1) and (A1.2), all infrared divergences cancel

already at the level of the matrix element Mfi, and not only later at the level

of the process rate or cross section as would be the case had we started with

the usual notion of particle, without the long-range part of the field included.

It is easier to do this proof in two steps: first to second order only, in

order to get acquainted with the formalism; then up to any order. Our treatment

will be simplified and schematized as much as possible, in order to focus on the

essential.

. .. .. . . .. .,i . - . . . . . . .. .. . . .. ,.-- - .



- 1 -7

2. Cancellation of infrared divergences

Infrared divergences are of two kinds, arising from virtual photons and real

photons. The former are photons which boomerang back to one of the charged

particles involved in the contemplated process. Real photons are emitted (or

absorbed) for good. Let Mo be the basic matrix element calculated for an

arbitrary process (e.g., scattering of charged particles on a fixed potential)

without including the coupling to photons. In fact, however, the process may

also happen with any number of virtual photons. Adding up the infinite series S

of processes (or Feynman diagrams) corresponding to virtual processes of any

order, one obtains 15 16 the matrix element

m o m MoeB , (A1.3) S

where we have neglected a small nondivergent term, and

Re(aB) - (e2/4V)E(k2+)b2)1/2 F (2(pf-k) (2(pj-k) (2) (M
k L(2pf.k-X2) - (2pl.k-X) j(A.4)

a -(1/2)Ek"zjSf)(k)'S}')(k)12" i

Here the rectangular bracket is a 4-vector and the exponent in brackets

designates the scalar product of the four-vector with itself. For x = 0 the%

integral derived from the sum in Eq. (A1.4) shows a logarithmic divergence which

has been exponentiated in Eq. (A1.3) by summing the the virtual photon processes

(diagrams) of all orders. The value -- of Eq. (A1.4) tells us that M' a 0 in

the limit X - 0, and therefore there are no processes without the simultaneous

emission or absorption of any (observable or unobservable) real photons. W

To get a finite result, we multiply the matrix element Mo which includes all

virtual photon contributions with the sum of all real photon contributions. To

second order, this yields



MoeG L1-(1/2) E IS I i(k)121-(1/2) E ISf (k)12J
k,z k,j

S+ E S (k)S( (k)JL1 + E S (k)S (k)JL1 - E S( (k)S(t k)j + nMo
k,& k,z k,.

0 MoL + n + aB - (1/2) (S [2 + IS i2 f) + :iski2

a MoL + n + aB + aJ, (A1.5)

Here in the first form on the r.h.s. we have first included the normalization

factors present in the in and out coherent states (Al.1). The following factor

(third rectangular bracket) is the scalar product of the in and out coherent

fields, describing a transition without interaction. The next factor describes

the emission of the final coherent state field Sf (k) in the scattering

process, and the last factor corresponds to the absorption of the incoming state

coherent field. Note that the last three rectangular brackets have just been

taken over and copied from the usual treatment of infrared divergences, Just as

we took over the virtual photon contribution. In the second form on the r.h.s.

we consequently limited ourselves to the second order in e/(hc) 1/2 and carried

out the multiplications. We omitted the upper polarizatin label and wrote the

argument k as a superscript, also omitting the indication of the summation

variables k and I under the sign of the sum. Finally we introduced the

.notations

Sf (k) - Si (k) = S(J)(k) = Sk ; A - (1/2)zjSkj 2  (A1.6)

in order to save space. The term Mont stands for a non-infrared-divergent

contribution. We notice from (A1.4)-(A1.6) that for low k values the summands

(or integrands) in aB and AB are identical, but with opposite signs in the limit

-O. Therefore, the infrared divergences cancel already at the level of the

matrix element.



The coherent states of the field of a physical charged particle defined by

Eq. (A1.1) are vectors in a separable Hilbert space. The result in Eq. (A1.5)

is not affected by a translation in this space, which amounts to adding or

subtracting the same vector yk from all states. Indeed, subtracting y. the

amplitude Sk _ Sk - Sk remains the same, and we get

M'fi = MoeSlBl1-(1l2)rjSi-ykj k Yl(lZ
k~f .,k= k k

Ll-ReE(Si-yk (f- )Ll+Ref(Sf k S kj1 l-Re (St-yk)SkJ + nmo .

L moe(Sl+n+B+ )  (A1.7)

as before.

To demonstrate the cancellation of divergences to all orders, we regroup the

perturbation theory series in the form

k k k+

Mfi = Mo<OexpLSfakjexpLzSk(ak
-ak)jexpLS takJ JO>

expL.(1/2)t(Isk 2 + Isfk1)j + Mon  (A1.8)

where Mon' is a nondivergent part.

Applying the relation eP+Q - ePeQe "(1/2 )CP*Q) with P = +skak and Q P+, we

obtain

k k kMfj M '1ecl<O Iexpt:SfakexpESiak IO><O Iexpr:Sfakexp :Skak 1O>

<Olexp-rSkaexpzSiak I0> + on  M o(eaB+aB + n'). (A1.9)

~oeprkk~iakI 0+o

The virtual phonon factor ecB arises from e"(I/2 )E[P Q) automatically, and has an

upper integration limit roughly equal to the energy E of the particle considered

and involved in the scattering process. The integrals in eaB, however, should

be divided in a part below the photon observation threshold co hfo and a part



above, going also up to E, which contains the part of the matrix element

occuring with bremsstrahlung. The parts below co cancel each other in QB and in

ag, demonstrating the disappearance of all divergences. Bringing the rest of

eaB to the denominator and neglecting the difference between B and 9, we can

write

Mfi m 1 lexp'ski- 11+ (A.1)expz' jSk I 2o

The sum with a prime is over IkI > co only, i.e., is restricted to observable

photons. Here we have separated in the numerator the unity which represents the

non-bremsstrahlung part of the rate, as we did earlier1 to second order.

3. Single-particle wave functions

The discussion and derivation outlined above suggests Eq. (A1.1) as the

correct choice for the incoming and outgoing physical charged particle states.

For the out state the subscript i is replaced by f. However, conventional

quantum 1/f noise (effect) is defined as the cross section (or process rate)

fluctuation arising due to the small bremsstrahlung effects associated with the

process considered. The current fluctuations caused by the general uncertainty

in the energy and momentum of the physical charged particle states have always

been called coherent11 ,12 state quantum 1/f noise (effect), and will be studied

separately in another paper1 ,12, Since we are interested only in the noise

contribution introduced by the collision at hand, we perform a translation in

k
the space of principal (coherent) state vectors, by taking y * Si in Eq. (A1.7).

The invariance of matrix elements with respect to any translation was verified

above in second order, and is manifest in Eqs. (AI.10) and (A1.9) to any order,

k
because Sk is an invariant difference of two vectors. Subtracting Si from thelkl>4

amplitudes of all vectors we obtain a bare particle incoming state with no observable



photons (Jkj>eo), and an out state

I>f = exp{-(1/2)rk,,IS1(k)jzj

exp { ,€S(' z ) ()e (Lz ) ( )e"' ik + (

= l-I/) S k~~ , S(1-)(i)e- ip(x-')a 1)+1T(pf)> (A1.11)

Here we have introduced also the recoil phase factors'e iq(x r) which describe

the momentum loss q = kc/v of the outgoing paricles of momentum pf = mv when

a photon of momentum k is emitted. These recoil phase factors are neglected in

the independent boson model which ignores the changes caused by the emission

of individual photons; we have neglected these factors so far, but are restoring

them here. The particle-specific constant r has to be introduced because the S

single-particle states J>f are not exact momentum eigenstates, and are there-

fore not exactly invariant with respect to translations. Individual single

particle wave functions may differ by such a random translation in space or

time regardless of whether they are localized or completely unlocalized in

space and time. For momentum and energy eigenfunctions, such translations

introduce only a general phase factor which drops out of any physically relevant
1, Ep (A 1.10) itdts mer drop l.-t.j a I sff r Ln&~ieradial cacrdiazate~x i' /n Una, dv.et,

calculation. YFor a spherical wave the translation is replaced b-ya time-shift,

or time delay; if this requires more than a general phase factor, a randomra4cal(r V

time)shift must be introduced for each scattered particle in the exponents.,

With the notation S(M(k)e(t)ei 'r = b(t,E), Eq.(A1.11) becomes similar to

Eq.(5.2) which was used in the main text of this paper. The main difference .

is the normalization factor in (A1.11), which was suppressed in Eq.(5.2). The

phase factor eiqr (or eiqr for spherical symmetry), with constant, particle-

specific r, present in b(t,t), is the random phase factor introduced by



us in the main text for each particle, which led to the i/N factor in

Sec. VIII. This derivation of the single-particle wave functions

treats the electromagnetic field quantum-mechanically, while the deri-

vation in Sec. IV was semiclassical.

In the present paper we have considered only one isolated scatte-

ring event. We also note that the subtraction of S? changes the noise

given by the final state. The corresponding separation in conventio-

nal (incoherent) and coherent state quantum 1/f noise seems to be con-

venient both for conceptual or didactical, and for practical or calcu-

lational reasons, connected with the method of compounding the noise

contributions from successive scattering events. As was indicated

earlier this addition of contributions from many successive, closely

spaced. scattering events gives a result close to the contribution,

calculated here, from a single representative scattering event 
with a

correction factor which is usually close to unity.

T -41
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PART II

APPLICATION OF THE QUANTUM i/f THEORY TO MIS INFRARED DETECTORS
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1. INTRODUCTION

The utilisation of infrared detectors at larger wavelengths and in the staring

mode has made the limitations imposed by i/f noise on the performance of MIS

structures more stringent and conspicuous. On the other hand, the develooment

of the quantum I/f theory has provided us for the first time with a possibility to

predict, model and calculate from first principles the various I/f noise

contributions. affecting the many currents and processes which are of importance

in the operation of infrared detectors.

The main purpose of the present report is to apply this new knowledge of I/f

noise to MIS structures working as infrared detectors. WJe start here with a brief

general description of quantum I/f noise and continue in Sec. II with the

inventory of various components present in the current of MIS infrared detectors.

In Sec. III we analyze the quantum I/f noise associated with the currents and

processes discussed in Sec. II. In Sec. IV we compare the 1/f noise components in

macnitude and determine their impact on the performance of MIS detectors.

Finally, in Sec. V we discuss the resulting I/f noise limitations, and point out

some possibilities of reducing the quantum i/f noise. Those familiar both with

quantum i/f noise and with infrared detectors may now go directly to Sec. III.

Quantum i/f noise1-5 is a fundamental fluctuation of physical cross sections

and process rates, caused by the infrared - divergent coupling of current carriers

to low frequency photons and other infraquanta. The physical origin of quantum

I/f noise is easy to understand. Consider for example Coulomb scattering of

electrons on a center of force. The scattered electrons reaching a detector at a

given angle away from the direction of the incident beam are described by

DeBroglie waves of a frequency corresponding to their energy. However, some of

the elecrons have lost energy in the scattering process, due to the emission of

Bremsstrahlung. Therefore, part of the outgoing DeBroglie waves is shifted to



slightly lower frequencies and interferes with the main, non-Bremsstrahlung,

component, yielding beats. These beats present in the probability density along

the direction of the scattered team will be noticed in the detector as low

frequency current fluctuations, and will be interpreted as fundamental C&oss

section fluctuations. Although the wave function* of each carrier is split into a

Bremsstrahlung part and a non-Bremsstrahlung part, no quantum i/f noise can be

observed from a single carrier. A single carrier will only provide a pulse in "he

detector. Many carriers are needed to produce the i/f noise e+fec+t, just as in the

case of electron diffraction patterns. While incoming carriers may have been

Poisson distributed, the scattered beam will exhibit super - Poissonian statistics

or bunching due to quantum i/f noise. The quantum I/f effect is thus a two -

particle effect, best described through the two - particle wave function and two -

particle correlation function.

Let us estimate the magnitude of the quantum 1/f effect by starting with the

classical (Larmor) formula qv2i/c3 for the power radiated by a particle of charge

q and acceleration v. The acceleration can be approximated by a delta function

v(t) = A V(t) whose Fourier transformd v.is constant. The one - sided spectral

density of the emitted Bremsstrahlung power 2q(7v)2/3c 3 is therefore also

constant. The number 2q(&v)2/3hfc3 of emitted photons per unit frequency

interval is obtained by dividing with the energy hf of one photon. The probability

amplitude of photon emission [2q(-2/vhfc3Ji/2 is given by the square root of

this photon number spectrum, including also a phase.factor. The beat term in the

probability density II2 is linear both in this Bremsstrahlung amplitude and in

the non - Bremsstrahlung amplitude. Its spectral density will therefore be given

by the product of the squared probability amplitude of photon emission with the

squared non - Bremsstrahlung amplitude which is independent of f. The 
,U
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resulting spect, al uensity of fractional probability density fluctuations is

obtained by dividing with ITI 4 and is therefore

IT1-4SI 12 f) = 8:q2X(A2/3hfNc3 = ?lA/fN = -2Sj(f), (LI)

where o( = 2e 2 /hc = 1/137 is the fine structure constant andOdA = 4i2.,-/3hc3 is

known as the infrared e':ponent in quantum field theory, and is known as the

quantum i/f noase coefficient, or Hooge constant, in electrophysics.

The spectral density of current density fluctuations is obtained by multiPlying

the probability density fluctuation spectrum with the squared velocity of the

outgoing particles. When we calculate the spectral density of fractional

fluctuations, the velocity simplifies and therefore Eq. (1.1) also gives the

fractional spectrum of current fluctuations Sj(f), as indicated above. "The quantum

I/f noise contribution of each carrier is independent, and there+ore the quantum

I/f noise from N carriers is N times larger; however, the current j will also be N

times larger, and therefore in Eq. (1.1) a factor N was included in the denominator

for the case in which the cross section fluctuation is observed on N carriers

simultaneously.

The fundamental fluctuations of cross sections and process rates are

reflected in various kinetic coefficients, such as the mobility/Zland the diffusion

constant D, the surface and bulk recombination speeds s and recombination times

V, the rate of tunneling Jt and the thermal diffusivity. Therefore, the spectral

density of fractional fluctuations in all these coefficients is given also by Eq.

(1). This is true in spite of the fact that each carrier wi'l undergo many

consecutive scattering processes in the diffusion process. The quantum I/f noise

in the mobility and in the diffusion coefficient is practically the same as the

quantum I/f noise in a single representative scattering event which limits the

mobility or the diffusion coefficient.



Due to the rapid relaxat:on of concentration fluctuations, the quantum 1/ l

fluctuations of scattering cross sections will only be reflected by the

fluctuations of the mobility and the diffusion constant of the carriers, and not by

fluctuations in the concentration of carriers.

For large devices the concept of coherent state quantum i/f noise was

introduced1 ' 12; see [..lko or details. In this case the Hooge parameter

o(H may be written

o4 H = (c(H)coh = 2c(,>," Z 4.6 10- 3  (1.2)

where o(= /(137) is the fine structure constant. This is of the same order cf -

magnitude as the empirical value c=F = 2 I0- 3 that Hooge found fcr long devices.

It is therefore proposed that Hooge's emprical value fora(H is due to coherent

state quantum i/f noise? so that it has a very 4undamental ori.an.

For small devices (e.g., of size L < I0/U m) we apply conventional, or

incoherent 2 - 8 , quantum i/f noise which is just the cross section fluctuation

introduced above in Eq. (I.). In that case H may be written

O'H = (OH)incoh = (4(x/37)[(,)2/(c2)],(.3

where Av is the change in the velocity of the carriers in the interaction process

considered. This expression holds for any 1/f noise source describable by

fluctuating cross sections. Since usually ( C/c 2 )<(i, except for carriers with a

very small effective mass, we now have c(H < 3.1 10- 3. This may explain the low

values of OH (in the range ofO(H = O- 5 - I0- 9) for very small devices. In I
between one can introduce a parameter s : f(L/L 0 ) where L is a characteristic

size and write 1 2.

H  (-H)incoh[l/(' + 5)] + (s)H)cohs/( + (3
4_,

~l
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w'.th s<<! for L/Lc-<i and s>1i for LAc:ordino to this rough

approximationlL, Lc2 I0/ m fcr samples with a concentration c of carriers of

1 5 cm- 3 and varies proocrtional to c- 1/ '. This describes the transition from

Eq. (1.2) to Eq. (1.3) when one goes to devices with smaller and smaller sizes, as

we shall see below in Eq. (3.21).

Wther, we apply Eq. (.i) t: a certain device we first need to find out which are

the cross sections which limit the current, and then we have to determine both

the velocity change aiv of the scatte!ed carriers and the number N of carriers

simultaneously used to test each of these cross sections. The next section deals

with the first problem, i.e., is dedicated to the study of currents in MIS infrared

detectors.

I. CURRENTS IN MIS DETECTOR STRUCTURES

MIS detectors are different from photovoltaic detectors, because they do not

contain a pn junction obtained by inhomogeneous doping, and use an insulated

field plate, or gate, placed on top of a homogeneously doped narrow - bandgap

semiconductor. The gate is used to control the surface potential, driving the

semiconductor surface into deep inversion. The field of the induced quasi - pn

junction obtained under the surface of the gate in the homogeneous semiconductor

material is used to separate the carriers generated by photo-electrically induced

band to band transitions just as in a photovoltaic device. The MIS infrared

detector is therefore similar to a capacitively coupled photovoltaic detector, V.

without the inconvenience of inhomogeneous doping processes.

MIS detectors are operated in the pulsed regime by applying the gate potential

which creates the inversion under the surface for a finite time only, and by S

applying subsequently a potential which flattens the energy bands near the

surface and releases the carriers which had accumulated from photo electric



effect and dark current processes during the preceeding interval. The electrical

sional cbtained when the carriers are released, i.e.. during readout, is

prcoortional to the number of carriers accumulated, and therefore to the total

current supplying the inverted volume under the surface with minority carriers

from the bulk and from various thermal and photo electric processes in the

deietion. inversion and surface reaions. This electrical signal is used in order

to determine the f'u: of infrared rad:aticn. For this determination, however, the

dark :urrent contribution needs to be subracted first.

The dark current is the current supplying the potential well, defined by the

inversion region under the surface, with minority carriers in the absence of the

applied infrared flux. Any low - frequency fluctuation in the dark current will be

interpreted as a fluctuation in the major infrared flux signal. Therefore

fluctuations of the dark current at frequencies below the readout frequency will

limit the performance of infrared detectors. In the pulsed mode of operation

considered here, the dark current is monitored only during the inverted phase,

when carriers are accumulated in the potential well. Therefore the cross sections

and process rates which control the intensity of the dark current are not observed

continuously either. Nevertheless, the quantum 1/f fluctuations of these cross

sections and process rates will be the same as if we would have observed them

continuously. Indeed, the changes in the incoming flux of electrons testing all

cross sections and process rates in the semiconductor is only slightly affected by

the applied gate voltages, and is present also in thermal equilibrium. This

independence of i/f noise on the continuous or discontinuous character of any

applied bias has been experimentally verified16 durina the last 2 decades, and

has been found to be in aoreement with the interoretation of '/4 noise in terms

of fundamental resistance fluctuations. Althouoh the experimental verification

was performed on fluctuations in conduction only, from the concept of cuantum



I/f noise we know that the similarity of quantum i/f noise in the continuous and

pulsed regimes should be also tt'ue for quantum i/f fluctuations in recombination

cross sections and tunneling rates.

The dark current has to be subtracted from the total current in a (HgCd)Te MIS

device to yield the photocurrent. Therefore, the minority - carrier dark current is

the single most important parameter for the operation of MIS devices as

detectors infrared radiation9 . This applies both to operation of HIS devices in

the thermal equilibrium mode, in which the dark current determines the MIS diode

impedance, and to operation in the dynamic, or integrating mode, in which the gate

voltage is pulsed, and in which the minority - carrier dark. current determines the

storage time of the device. The main component of the dark current in narrow

bandoap HgCdTe is the tunneling current via bandgap states 9 , which can also be

considered as an electr.c breakdown effect. In general, the tunnelino current

occurs both through band to band transitions and through intermediary states.

The band to band tunneling current through a simple triangular barrier is

Jtb = (q3 E&/4)-Bh 2 )(2m*/Eg )i/2expE4(2m*)Eg 3 / 2 /3qhE ] , (2.A)

where E is the electric field associated with the barrier, and E 'is the bandgap.
g

The electric field can be approximated by the electric field at the semiconductor

surface

Es 12 qn o / F....E.) /, (2.2)- "".

where +S represents the empty well surface potential, and n o is the doping

concentration. Substituting this value into Eq. (2), with m*/mc = 7 10- 2 EC, we

obtain
9

Jtb= 10 noil 3 12e.p[- 4.3 1010 E gl(no il/2I A/cm2 , (2.3)

~tb o~ g o



where no is in cm-3 and Ege', in volts. Therefore the tunneling: current is
AS

strongly dependent on the bandgap and also depends on the doping concentration

and the surface potential.

Experimental values of the tunneling current are usually larger than Eq. (2.3)

because of the additional effect of tunneling via bandgap states. This ef.fect is

particularly important in n - type devicesl 0 . Indeed, in n - type devices the

applied gate voltage is negative in order to produce depletion at the surface. The

energy bands are therefore curved upwards at the surface, and transitions of

electrons from the valence band to Shockley - Read (SR) states at the middle of

the bandgap, as well as the subsequent transitions from these states to the

conduction band are facilitated by the presence of many defects right at the

surface of the semiconductor. In p - type devices the similar indirect tunneling

processes occur father away from the surface, because in this case the bands are

curved downwards at the surface, and transitions of electrons from the valence

band to the centers at the middle of the bandgap, as well as the transitions from

the centers to the conduction band well at the surface, occur right where the

curvature begins, i.e., further away from the surface. We conclude that in p -

type devices there will be fewer SR centers active in indirect tunneling, and

therefore the tunneling current Jc via SR centers at a given teperature and a

given applied gate voltage will be smaller. The tunneling current will be further

reduced in p - type devices due to the lower density of states present in the

surface potential well due to quantization of the motion of the electrons in the

potential well at the surface. The reduced values of the dark current in p - type

devices correspond to higher values of the breakdown field in these devices. The

best measured value I 0 of the breakdown field in 10 m cutoff p - type devices is

in exess of i.0 V/?m, whereas that for n - type material of similar bulk defect

qualit:, is 0.5 V/pm. On the other hand, the minority carriers diffusion current is

X II
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larger in p - type devices due to the smaller mass and higher diffusion constant

cf electrons comoared to holes. The advantage of p - type devices is therefore

considerable only in the case of very narrow bandgap and very long cutoff

wavelengths. We shall therefore consider both the case of p - type and n.- type

devices. The large diffusion current present in p - type devices corresponds to

the large value of the diffusion lencth of electrons and can be reduced by thinning

the device, i.e., by reducing its thickness well below the diffusion length.

In general the dark current id can be written in the form

ud = Jdiff + %deo + Js + Jtb + Jtc + Jtsc + Jb + q (2.4)

The eicght terms on the right hand side correspond to minority carrier diffusion.

from the bulk, generation from SR centers in the depletion region, generation

from SR centers at the surface, band to band tunneling, tunneling via SR centers,

tunneling via surface centers, recombination on the back surface and photoelectric

generation by the thermal radiation background flux4tZ. We shall give the

formulae1 0 which determine these terms below, also including an ex.ample of their

calculation in a p - type device

3 dif = (qni /Po)[KT4/qTnji" 2 = (.6 0-1 9 C 36 1024 cm-6/1015cm-3)[0.0iV

i.5 i05(cm2/Vs)/O-6s]1/ 2 = 2 10- 4 A/cm2 , (2.5)

Jdepl = qniW/2 i.6 i0- 1 9 C 6 10i 2 cm - 3 2 i0- 4 cm /(2 0- 6 s)

10- 4 A/cm2  (2.6)

J. b = qnis/ 2 = (1.6 iO-9C 6 10 2"cm 3 20cm/s3 = i.E; i0-A/cm2 , (2.7)

'Itc iO- 3 (NrA/Eo) erpt-5.3 6 E 10-13( 4 iO1'cm 3 0.2V/0.062V)

ep[-5.3 iO6 (O.062V)2/300OV/cm) = 8 10-A/cm2 , (2.:)

W= " -"• " " " p. " .. . " ' , . .. ,,' . . .. W



arnd Jtb was given by Eq. (2.3)p yieldirng 10 7 A/cm2 . Here ni, = 6 101"crn3 is the

intri?-simc carrier concentratlonp anid the concentration of holes was -zaken to be p.

2 !14~:m- 3 . The mobility/On i.5 iO' 5 cm2 /Vs as well as the life time rr, ios

of the mno!,.ty carriers have to be replaced bYk and 27f for the case of ni - type

devices. The surface recombination speed was denoted by s = 40cm/st and the

concentration oi intermediary states e#;Tective for tunneling was denoted by Nr.

N l 1 4-m-3. 'he tandcar- considered was E- = 0.065&V, the suriace potential~ =%

0.2V and the electric field below the surface E = B000V/cm. All numerical values

have been included only as an example and are not characteristic of a ;)articular

device. The numerical factors in Eq. correspona to p - type HgCdTe wi.th a

201jvm cutoff wavelenoth and were taken from the paper of K'inch and Beck10 . For

n- type devices we also need to include tunneling via surface states. if the

density of1 fast surface states is denoted by Nf 5 = 10 1 cm 2 V 1 tI urn

generated from tunneling via a uniform density of fast surface states across the

bandoap will be given by9

Jtc qtp N k =2 1.75 10-4 A/cm2 . (2.7)

The sum of the first seven currents on the right hand side of Eq. (2.4) must be

smaller than the eighth which corresponds to the thermal radiation background

flux, for background limited (BLIP) operation. Although not all terms in the dark

current are of importance, we still retain them at this point, because their

quantum 114 noise may be quite significant, even if the corresponding current is

neglijibie. We shall now proceed with the calculation of quantum 1/f noise %.v
contributions from all these currents.

f IU U'~. &AM PMV#', r.



III. Q.UANTUM I/f NOISE SOURCES

1. 1/f Noise in the Diffusion Current

The diffusion limited dark current Jdif4 will exhibit i/f noise due to

conventional quantum I/f fluctuations in the scattering cross sections o4 the

carriers due to phonons and impurities. We apply the fundamental formula civen

by Eq. U,.i) for an individual scattering process in which the velocity change .v is -

given by the thermal energy of the carriers, with the assumption that t.l -

collisions are perfectly randomizino collisions. If the velocity v is rotated by an

angle 0 in an elastic collision, the velocity change islA'v= 2v sin(i/2). Averaging

over all angles and velocities, we obtain

2=4v2 sin2 'i2 = 2v. (3.1)

and therefore from Eq. (1.1) we get in thermal equilibrium at the temperature T

the i/f noise coefficient

OLH = (4Dt/371(6RT/m*c2), (3.2)

where we have assumed a Maxwell distribution of velocities. For Hgi_,Cd,:Te

with x = 0.2 we have mn* 0.00e:m0 and for x = 0.3 we have in = 0.02m..

Therefore we obtaincH = 2 I0-7 in the first case andodH = 7.5 i0 - 8 in the second

case.

For the case of Umklapp scattering, which occurs in semiconductors only to a -

limited extent due to the relatively small number of high momentum phonons

available at the temperature T. the momentum change of the electron is given by-a

the smallest reciprocal lattice vector, and thereforeA v = h/am*. We therefore

obtain the quantum I/f noise coefficient

o,H = (4p(/3-/l(h/m~ac)2' (3.3) I4
•-. -,. ,,,



which is much larger than Eq. (3.21), but has to be multiplied with a negative

e:ponential which describes the scarcity of phonons with momentum of the order

of a reciprocal lattice vector. [The negative exponential e-& / T could be included

in the current weight factor which will be defined below in Eq. (0l), but we.prefer

to include it here already]. Combining Eqs. (3.2) and (3.3), we obtain for

conventional I/f noise in the mobility and diffusion coefficients

= (4/3,)(6kT/m c2) + (him *ac)2exp(-P/T)J, (3.4)

where 6 is about half the Debye temperature for simple metals, but may be

higher, of the order of the Debye temperature, for semiconductors.

The quantum i f noise considered so far is known as conventional quantum I /f

noise, and affects cross sections and process rates. In sufficiently large

semiconductors samples we expect a larger form of quantum i/f noise, described

in Appendix A and known as coherent state quantum 1/f noise. For this type the

1/f noise coefficient is given by

coh = 2-,91 = 4.6 10 3 . (3.5)

The values of the quantum /f noise coefficient given by Eqs. (3.1) - (3.5) can

be used to calculate the quantum i/f noise which affects the various currents

listed in Eq. (2.4). We first consider the case of the dark diffusion current of

electrons from the bulk through the surface barrier in a p -type MIS device,

similar to diffusion in a n+p junction, because in both cases the current is

determined by the diffusion of electrons which are minority carriers, against the

built - in field of a Boltzmann potential barrier into the surface well, and by the

thermal generation of carriers there. We start with the derivation of the

mobility fluctuation part of quantum I/f noise in a n+-p diode. For the MIS

barrier, just as for a diffusion limitted n+-p junction, the current is controlled by



diffusion of electrons into the p - regaon over a distance of the order of the
diffusion length L -- (Dn')I/2 which is usually shorter than the length wp of the

p - region. If N'.x) is the number of electrons per unit length and D n their

diffusion constant, the electron current at x is

Ind eDndN/d):, (3.6)

where we have assumed a planar junction and taken the origin = 0 in the junction

plane. Diffusion constant fluctuations, given by kT/e times the mobility

fluctuations, will lead to local current fluctuations in the interval 2 J

IndX ,t = I, d Dr, : , /Dn . (3.7)

The normalized weight with which these local fluctuations representative of the

intervalA x contribute to the total current Id through the diode at x = 0 is

determined by the appropriate Green +unction and can be shown to be

(Ax/L)emp(-n/L) for wp/L >> I. Therefore the contribution of the section,6x is

'ld(x ,t) = (tx /L)exp(-x/L)IndDn( ,t)/D n t (3)

with the spectral density

SAId(xf) = (Ax/L)2 exp(-2x/L) Ind2 SDn(',f)/Dn2. (3.9)

For mobility and diffusion fluctuations the fractional spectral density is given by

C/Hnd/fN,6) whereoLHnd is determined from quantum 11f theory according to Eas.

(3.1) -(3,5). With Eq. (3.6) we obtain then

S4id(>:,f) : x/L 2 ) exp(-Z- /L) (eDndN/dx)2 HndifN. (3.10)

iThe electrons are distributed according to the solution of the diffusion ecuati on,

i.e.

- .'% b, ... . . ,_, i _N ' . . . ...



N(x) = IN(O) -Np] e):p(-x/L) +Np; dN/d.:= -. C[N(0) -€pi3/L) exp(-'/L). (3.11)

Substituting into Eq. (3.10) and simply summing over the uncorrelated

contributions of all intervals M:, we obtain

SId(f) =cKHnd(eDn/L2)2 fN(0)- N 3e - ) / L +Np1 '(3.12)

(eDn/2)2 = (e/L2n)2. With the expression of the saturation current

10 = e(Dn/kn) 1/ 2 Np and of the current I = I0 [enp(eV/kT) - I0 we can carry out the

integration

Sld(f) =Hnd(el /f ,n)fa2udu /(au4 1)

= Hndlel /f Tn) [F(a) -F(a e - w /L)) 3OKHnd(ei/f/tn)aw/E(a + 1)L], (3. 13)

the last form being for wp << L. Here we have introduced the notations

u = exp(-x/L), a = exp(eV/kT) - 1,

F(a) = 1/3 - !.'2a + i/a 2 - (i/a 3 )ln(i+a). (3.14)

For w '> L we have F(o) = O, and the second term in rectangular brackets drops
PK

out in Eq. (3.13).

Eq. (3.!3) only contains the fluctuations in the mobility and the diffusion

constant. In a similar way we calculate the quantum I /f fluctuations of the

recombination rate in the bulk of the p - region. We have for the recombination

current AIR(x) in a section Lb., if N'(0) is the excess carrier density,
A£ IR 0:) = e N'(x)&)'/ Pr n .(3. 15)

Putting Cn = i'Irn and bearing in mind that tn and hence Cn , fluctuates, we have I
for the section A,

SAIRlx, t) = IR 0:) [JCn/Cn] with



S:' tlhat. sin-ce ' k = AN /Av

vihe'e N'(x) = U.I - NJ~(u and NO.) 1-40, + N~ as beiore.

It :s easily snown that the fluctuatino currentj( N, t) at the junct-or is

) Jb i=(x, t)exp(--, /L)

so

SI (f %n elN pL/47,n) f N(x) jexp(-2xiL)d(x/L)

~Hnr~~o/f~ [a ,.j3.L/(au + DI:du~H ei/[rJ (a) - F(ae-w/L]

where F7(ai, at and u have the same meaning as before.

We can use the similarity of the quantum 1/f noise results for diffusion

current fluctuations caused by mobility fluctuations and by recombination speed

fluctuations in order to combine both into a single formula

S1(f) =(V-Hd +dHnr)teI/fzn)EF(a) - F(ae-w/L)3. (3.20)

In the limit of very short devices (w <-" L) the last factor becomes aw/1(a + i)L3,p.

and in the limit of long MIS devices (w~ p > L) it simply becomes F(a). In addition

we have a current noise contribution S~b from the quantum i/f fluctuation of the

recombination speed s on the back sur-ace.

Ec ar we have ccnsidered only conventional ouaritum ',/f noise which is

aop'icab'-lo to sufficiently small devices. In general, howevert we must

interpz-late between conventional and coherent quantum I/f noise, acccordina to S

the relat:on

0LH ( - s)D[: A/fJ + Es/U1 + -D3.i

* I . .
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where s = E m /Ek = 2e4N'im*c2 , and N' = nS is the number oi the carriers per unit

length o the device. s represents the ratio between the magnetic energy per unit

length and the kinetic energy per unit length cf the device. The quantity e-/m*c-

rmm * can be calculated in terms of the classical radius oi the electrQn r, =

.84 10- 1 3 cm. Then we obtain s = 2 r N'm/m , i.e., the parameter s represents

twice the number of carriers present in a length of the device equal to the

classical radius of the electron. We must compare s with 7TA, and if s < we

apply conventional quantum 1/f noise, whereas for s ".),-A A we have to apply

coherent cuantum 11f noise. In general the approx:imate formula of Eq. (3.21)

must be used +or the transition region.

The dimensionless parameter s is easy to calculate in any practical case. For

instance in the case of a MIS device of area 50,g.m x 50,Lm with a concentration of

carriers of 10" cmr- we obtain N' = 2.5 10'1/cm, and with m/m* = 50 we obtain s

= 7. On the other hand, we can estimate A for ccnventional quantum i/f noise and

we will certainly find A << i, because the velocity change of the carriers must be

much smaller than the speed of light. Therefore, in this case we must apply

coherent quantum i/f noise, because s ", 7A. Consequently, in Eq. (3.20) we must

set

Hd + Hnr =°coh = 4.6 10- 3  (3.22)

The coherent state quantum i/f noise coefficient thus replaces the total

conventional Hooge parameter.

2. 1/f Noise of the Recombination Current Generated in the Depletion Region

The quantum i/f noise of the recombination current thermally generated ir the

depletion region arises from quantum 1f fluctuations of the bulV. recombinaticrn

.~ ~ ~ ~ ~ J e , -, .



rates the depletion region. The differerce between the recombination rate R

and the generation G is given by

- : n - n-i]/(n + njerpo + (. + pllrno] (3.23)

where n I and p, are electron and hole densities when the Fermi level lies at the

trap level. If the tran level lies at the intrinsic level, n, = p, = ni. Moreover,

CPO and 7no are time constants for electrons and holes. If A is the cross -

sectional area of the junction, the current is

e= e(R - G)A dx = e [Pn - n Ui]/[n + n,)rpo + (P + ni)noJA d,. (3.24)

0f

where w is the widtn of the soace - charge reaion and the trap level is assumed

to lie at the intrinstic level.

We now turn to the g - r noise. The time constantsrp, and T no fluctuate in a

I/f fashinn and this produces the quantum 1/f contribution to g - r noise. We now

write

Z-no i/Cn

7- po = i/Cp (3.25)

where Cn and C are the generation (or combination) rates for a single electron

and for a single hole, respectively. Consequently "

bz no/'no = -Cn/Cn)

r po/po = -TCP/Cp) (3.26)

We now anply this knowledge to Eq. (3.23) and observe that

(R- G) = C R 00 - C0.0)]

(n +ni)Vro(C ,/C..)] +[( +p)Tn C l(r, +nZ'PO + ".. +ni)Znc (.2

K'~~~~~~~~~ no...-fW ,-v . , . . , n W ,w.@ . ' ,€ """'" """ "



so that with

e = efcRO, - G(.)JAd,, (3. :)

0

the noise is

CS,)= e( 2ff E()- G()]AI(R(x') - G(x 3JA
n" :x " f)/C + (p + ni)2 Z o (Cn 

' ' C
[n + ni)p(, p n- Cn"

in + ni)Z-po + (p + ni)W'no]'>dxdx', (3.29)

since S C and 6 Cn are independent.

We now observe that

pn - n2
i = n'i[exp(eV/2kT) - I ][e,,p(eV/2kT) + I (3,30)

and that the integrand in Eq. (3.29) has an appreciable value only if p- n ni

expeV/2KT). By substituting n + ni = p + ni = niEexp(eV/2W1) + 13 we define an

effective width Weff such that

40-

eA [(pn - n2 i)d:.]/E[n + ni)ZpO + (p + ni)trlo]

= eA((pn - n2i)/n iexp(eV/2T) + 1]}CWeff/(lCpo +T no )  (3.3tD

We may thus write

1 = Ig r = eAweffnitexp(eV/ 2kT) - i]/(Tpo +'no )  J

= [eNeff/(lpo +T no)]tanh eV/2kT (3.32)

where Neff = Aweffnite'p(eV/2kT) + I ] is the effective number of hole - electron ,

pairs taking part in the conduction and noise processes. This equation is exact

but not very useful since it contains the unknown parameter Wef f .f

We now turn to Eq. (3.29) and observe that



acp( ~ )/' ='Hp/f)/R(>" ) + G("'1(Zp, +Zno)A J(x' - 0)(33

and

S n(tI X', f)/C ={ /f/R:) G(>')](-LJ +7 A'S(,. - ,)(3.34)

The factor Ono 'Z' ) enters in because SC,(Xt *t'f 4)/C4 and SnO 4 Cr

must be independent of ?', and Toif pr ie:p(eV/2-iT). This yields, if we

intearate over the 3 function

SIMf= e' 9 (ER(O~ - G(O)J'A/(ZT +Znro)EF(,) + OO

(Cn + ni)7 P'-V p/ + (p + ni4~c'(rfICn+ nirc + (p + ni)Z ,, ,Jd (3.35)

We now observe that the second factor in -to.. (3.35) is practically a constant

as Long as p and n are comparable. We may thus bring that factor outside the

integral sign and write

/E(n + n)Z + (p + ni)Zno3 j2 d /f (.6

whered..H is given by

OLH (Zp/~ +7' no) Hp + (2rno/Wrpo +T~no)tLHn (3.37)

We thus have

S1 11 He / Cn +Z Po)J I EROO) - GM3ARO+ G(x))dm

-[VHelgr/f(t7no +Z po)3tanh~eV/21WrJ

We can now prove Eq.(3.38) in a Hooge - type formulation 11J. *S

Here ie pu

SIMII~~ ~~~~ gr Hfl 3.9 A1W



But according to Eq.(3.32) lo r = (eNeZ/Ztanh eV/2kT, so that

Sl(f) =4 H[eIgr/--Ztanh eV/2kT, Z= (no +Z po) (3.40)

in acreement with Eq.(3.38).

We can also prove Eq.(3.38) from the iollowinc considerat:)n. We write Ic r

(N ffI) tanh eV/2kT, where LI = e/ fluctuates. We then have

S.i(f)/A I 2  Htf or Sl(f) =0 Hif(e nAI (3.41)

so that, since the Nef f hole - electron pairs are independent

S M(f) = NeffSA!(f) = (eNeffl/f)Z;H = (elgr/f'H~tanh ev/2k (E,42

whereS.H is given by Eq.(3.37) and T=,(r + Z ).

The last two approaches are easily extended to other cases; the method works

as long as a time constant L and an Nef f can be defined.

We finally evaluateOHp ancd, Hn from quantum i/f noise considerations [2,

0( Hn = (4ck/37Q)(,6vn/c ) = 4d/37[[2ea(Vdif - V) + 3kT3/mn c 1 (3.43),

o( Hp = (4/7VO 2 p/c") = 4d-/37D[2e(I - a)(Vdif - V) + 3kTJ/m* c (3.44)

and as a consequence (see Eq.(3.37) and

o6 H = (40/3 O([2e(Vdif - V) + 6kT]/[(m*n)i 1/2 + (rp)1/232c 2  (3.45)

The problem has hereby been solved. Note that in Hoi_,.CD,.Te with x = 0.3, m -

= 0.02 m, m* 0.55 m, so that C(m n ) I 1 2 + (rr,*)/2]2 0.7E0 m, very much larger

than m*n.
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3. Noise in the Surface Recombination Current

The surface recombination currnet is a dark current component originating

from surface states at the interface between the surface passivation layer and V

the bulk. The recombination cross sections of these states will exhibit quantum

I/f noise. The quantum i/f noise coeific:ent( H reflects the velocity change of

carriers involved in this process

= (4/3Z)(iZ/m*c2)CRkT/2 + eU/2 + O.ieVj, (3.46)

where U is the surface potential jump present between the surface passivation

layer and the bulk even if no gate voltage is applied, and V is the applied gate

voltage which we take with a coefficient less than unity, here for example with a

weight of 0.1.

The calculation of surface recombination ouantum 1/f noise is similar to the

calculation of quantum I/f noise from recombination in the space charge region.

However, in this case the cross sections are not distributed over the width of the

junction, but rather are concentrated at the surface which is caracterized by the

surface potential$. Therefore we can write an expression of the form

Ss(f) =i HeJstanh x / T + p)exp(e )/kT). (3.47)

We note that the fabrication process of MIS structure introduces less bulk

defects than the fabrication of photovoltaic devices. Nevertheless, the

fabrication of MIS devices introduces some defects in the bulk layer located right

under the surface. These defects will manifest themselves through a contribution

to indirect tunneling.



4. Q.uantum i/f Noise in the Tunneling Rate

in the case of tunneling from a surface accumulation layer to the bulk, the

velocity change of the carriers will lead us from the thermal velocity of the

carrier on one side of the barrier to the thermal velocity of a carrier on the. other

side of the barrier, if band to band tunneling is considered. If, however, the

tunneling goes via intermediate states located in the bandgap, the velocit,, is

zero as long as the carrier is staticnary in the intermediate state. We can

therefore write the I/f noise coefficient

0( = (4o/3T)6kT/m ~c (3.4 8)

for band to band tunneling, and

= (4-w13,)3(,/m * c (3.49)

for tunneling via intermediate states in the bandgap, where we have considered

the average squared velocity change two times smaller. The effective mass is the

mass of the minority carriers in the bulk material.

For band to band tunneling from a surface inversion layer to the bulk, the

velocity change of carriers corresponds to an energy difference of the order of |S
the bandgap Eg plus an energy differnce of the order of the thermal energy 3UT/2,

provided we are dealing with deep inversion, as used in practical MIS devices in

the pulsed mode of operation. This yields the quantum i/f coefficient .

= (4ctD/B(E + 3VTl2)/m*c 2  (3.50)

for bmand to band tunneling. For tunneling via intermediate states in the bancgap

the corresponding energy differnce will be smaller, and therefore we replace Eg

byE 12'.

%
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o( = (4gt/3,)(E /2 + 3kT/2)m*c 2. (3.51l

This relation is applicable both if the intermediate states are located in the

depletion region or at the surface.

In the last four equations we did not divide by the number of carriers

simultaneously involved in the tunneling process, because this number is less

than unity for practical tunneling currents. Whenever a cross section or a

process rate is tested with one electron or less than one electron at a time, the

effective number of electrons in the denominator of the quantum i/f formula must

be replaced by unity. Let us calculate the average number of carriers

simultaneously present in the tunneling process at any time. The tunneling

process occurs over a distance d = E /eE, and the speed v of the carriers will be

of the crder of the thermal speed in the case of an accumulation layer, and of the

order of the bandgap energy in the case of a surface inversion layer. Dividing d

by v, we obtain a tunneling time t = 6"i0-13s for accumulation layers and t = 3"

10-13s for inversion layers. From Eq. (2..8) we know that the tunneling current is

of the order of i0- 3A/cm2 . Multiplying this by to we obtain 3 - 6,I0- 1 6 C, i.e.,

2000 - 3000 electrons/cm2 tunneling simultaneously in a device of i cm2 area. In

a device of dimensions 50/m ) 50/1-m = 2.5 i0 - 5 cm 2 the average number of

carriers in the process of tunneling at any time is therefore 0.05 - 0.075, and this

is indeed much less than unity. Nevertheless, if the area of the device exceeds 5

10- cm " , Eqs. (3.48) - (3.51) require an additional factor e/tJtA which makes the

noise spectral density proportional to Jt and A, rather than to the square of -

these quantities.

The photoelectric current will reflect the fluctuations in the number of

photons arriving from the radiation background. The quantum efficiency will not

exhibit considerable quantum 1.1f noise, because the generated carriers will be

corrected with certainty. Therefore the collection of photoelectrically generated



carriers is not controled by any cross section or prccess rate affected byp

considerable quantum i/f noise, 1f we nealect the 1/4 noise generated in the

series resistance of the diode, there should be no photoelectrically generated i/f

noise from a short -circuited diode.

Since the various dark current fluctuations with 1/f spectrum are statistically

independenit, the total I,;+ noise is simply obtained by summing all contributions.

IV. 1/f NOISE LIMITED PERFORMANCE OF MIS DIODES

From Ea. (2.4) we write the total dark4 current. fluctuation in the form

s ~ "c 'Jdii +fjdep +rfJ5 +IJ'tb "lJtc -Jtsc "' oqfQ1 (4.D)

and the spectral density of current fluctuations will be neglecting f(ozo),

SJd SJdif + SJdep + SJs + S~b+ SJtc + SJtsc* (4.2)

Here we have lumped the recombination current on the back surface Jb together

with the surface recombination (generation) current J.. If we denote all the

corresponding spectral densities of fractional fluctuations by a prime, S'j =

Sj1 /LTi2 o we obtain

S'Jd~ =(dif/jd' IS dif + (Jdep/ "'i2S, Jdep +(LT 5 I'J d2/

+ +Jtb/Jd)2-S'Jtb +(tcd 'SJtc + (Jtsc/Jd)4 5 'J+.Sc' 43

This equation was obtained by dividing the previous equation through Jdan

shows that the biggest contribution will not necessarily come from the process

with the highest iractional quantum 1/f noise, i. e., with the highest 1/f noise

coefficient. The weiaht o4 each type of noise --s determined by the corresoond.,na

squared current ratio-.
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The detectivity of infrared detectors is limited in general by three types C4

noise: %) curent noise in the detector, (ii) noise due to background photons t~hcton

noise), kiii) noise in the electronic system iollowing the detector. We shall

nealect here the backoround photon noise and the noise in the electronic system.

The detectivity is defined as

D*0\, i) = kAfi:NPcHi2W 4.4)

where A is the area o+ the detector, NE the noise equivalent power defined as

the r.m.s. optical signal of wavelenghX. required to produce r.m.s. noise voltage
tcurrent) equal to the r.m.s. noise voltage current) in a bandwidthaf, and f is the

frequency of modulation. The noise equivalent power NEP is given by

NE== (hl/iq)( Sd(f)4fi" 2  (4.5)

Therefore we obtain for the detectivity

D*( \, f) = (7q~ihc) [A/SId(f)31 /2 = Jdqhc) ESjd(f)3-1/2 (4.6)

We notice that D*(;k , f) is proportional to X up to the peak wavelength A,. For/\ >Xc

we have I = 0 and thus D*(-A, f) = 0. By substituting our result for Sjd, we

obtain the general expression of the detectivity as a function of various

parameters of the MIS device.

Let us now evaluate the magnitude of the various dark current noise %

contributions. With mh* = 0.55 m o, n* = 0.02 mopn = i06s, g = 0.1 eV, 3kT/2

= 0.01 eV, Nsf = 10 12 /Vcm 2 , we obtain for a p - type device witt A p >' L

S,~~(a =Qc. tfli/2,/[f k-,' t1/2N]Fa/
Jdl+f -- Hnd + Hnr)Ee/f njdijfFia=coe

(4.6 10- 3 /4fN ) 4-iO1OCi/ 2 /[0-6s i.5,05(cm2/Vs) 4-10 -21 jjl/ 2

p
i..-i0-6cm2/f, [or = 10- cml/f, with 0( = 2*10 - 5 for incoherent noiseJ (4.7)

S'Jdep= Hee/f(rno +,- po)JdepJtanh eV/2k7

O dep,
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I(He e/feAwn~eVi'kT)JeVt2kT = 4He/fAwnl = 4.6 10- 9 cm2/f (4.,")

S 4d/3tT)(2/m*c2)[3kT/2 + eU/2 + 0.1Ve] le tanhx /fflno + -Cp)Js3

z (4£/37I0.02)(2/500000)[0.O25 + 0.5 + 0.5] Le tanhx /feAwni(eeV/ 2 kT - ]

=7 10 cm."/f (4.9)

S-Jtb = (44/3T)(ME 0  3kT/2)/m c2 = (4/.5 137 0.02)(0.11/500000)

= 3.3 10-8cm4/f (4.10)

Sj= (4 /3 ')(Eg * 3kT)/2m c2 = (4/9.5 137 0 .0 2 )( 0 .I 2 /106)

-. ,- 10-:cm 2 /f = S'Jtsc4.1)

C~~ = "5ts

S'Jdiff was calculated in the small bias limit for wp>>L, but wp 0.25 L gives the

same result; the incoherent case with a lattice constant of 0.65 nm and 0 = 320 K:

was also listed above (because a i0/rn thick device is very short, so it may be

applicable), and would give 1., 10-1 0 cm2 /f for a n - type device. Eqs. (4.8) -

(1) would be reduced only m /m = 27.5 times for n - type devices. We mention
nN

that S'Js has been calculated with the inclusion of a term of 10% of the applied

gate voltage V into the kinetic energy of the carriers at the surface, and that for

the back surface recombinaiton current this term has to be dropped in the similar

expression of S'Jb. However, we have neglected this here, because the surface

recombination terms will not turn out to be important, as we will see below. The

applied gate voltage was taken to be V = 5 V. Using Eq. (4.3) and the current

densities evaluated in Eqs. (4.10) - (4.14) to calculate the fraction of each

current, we obtain

Icm - 2 f S'i(f) = (20/132)2 1.:: i0-6 + (1O/132)2 4.6 10- 9 + (3.6/132)2 7 10- ' +

(0.0 1/ 1327)2 3.3 10-8 + 0(:0/122)" i..E: 10-' + (17.5/M3)" i.-' iO-e

= 3.67 i0- + 2.6 i0-1 + 5.2 10- 1 1.9 10-16 + 6.61 10-9 + 3.7 1o-iO

= 4.37 10- 8 , or for incoherent i/f noise, 7. 10-9 (p) and 3 10- 1 0 (n). (4.12)



This value can be used in order to estimate the detectivity of the device in our

example. Substit.ting into Eq. (4.6), we obtain with a quantum efficiency ' = 0.7

and wavelength of iOm

D*(;, 4) = ( q/hc' ESjd(f)- 1 /2= E0.7-1.6,10-1cC 10-5 m/(6.6'i0-3 4 Js 3"

10-m/s) Ef/(4.37"lO-Scm2 i.74'i0"A-/cm4)ji1'2 = :I10 (cm i/: 1 1 /w) / or

for incoherent i/f noise, 5'0 7 (P, and 2.5 10' (n). (4.13)

In conclusion we note that for the relatively large devices which we have

considered, most of the cuantum i/f noise comes from fluctuations in difusion

and in the tunneling rate via .mpurity centers in the bandgap. The effective mass

of the carriers is present in the denominator of all quantum i/f noise

contributions e:cept the coherent quantum i/f fluctuation present in the

diffusion current of large devices. In smaller devices the diffusion current will

also be cven by the conventional quantum I if formula which contains the

effective mass of the carriers in the denominator. For umKlapp scattering the

mass of the carriers in the denominator is even souared. Consequently we expect

lower quantum i/f noise from n - type devices, in which the minority carriers are

holes, particularly if the devices are very small, e.g., below i 01m.

V. DISCUSSION

The transition from coherent state quantum i/f noise to conventional quantum

I/f noise is particularly interesting, and should be studied experimentally. This

is possible with a sequence of devices of smaller and smaller size, and will show 4

a consideralble change in noise at a size of the order of 10v4m 2 . The theory of

the transition is not yet well developed. Therefore, this experiment has

particular importance: we do not know if the parameter s is sufficient to
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characterize the transission, and if the parameter s should not be replaced by a

power of s, or by any other function of s. The interpolation formula used here is

just a guess, or a speculation guided by the physical understanding of coherent

quantum i/i noise as a collective-4ield effc~t, and of conventional quantum I/f

noise as an effect which is not based on the collective field state of the

particles, but arises from the individual field of each carrier.

The most interesting component of the recombination current is the surface S

recombination current which plays a major role in the case of infrared detectcrs

with pn .unctions. In the case of MIS devices this role is not so important, as our

calculation shows. Nevertheless one should try to reduce both the concentration

of recombination centers and the value of the surface potential jump U. This can

be accomplished with careful surface treatment, and with a good passivation

layer. SiO- layers have been successfully used by Radford and Jones in

ion-implanted and double - layer epitaxial HgCdTe photodiodes i 3 .

In general the larger life time of the carriers in MIS devices, compared to

junction devices is due to the absence of the damage inflicted by ion -

implantation, or by the heavy doping required in double - layer epita:ial

photodiodes. The quantum i/f noise is invesely proportional to this life time.

Therefore, MIS devices should have lower i/f noise. On the other hand, i/f noise

present in the applied gate voltage, in the timing of the readout and the value of

the readout potential will be added as a i/f noise source, if it is present. In the

present calculation, however, this noise source has not been included.

iny reouction in the concentration of tunneling centers present in the bandoap

will have a positive effect on quantum 11f noise. As we have seen in Sec. I, p -

type devices should yield less tunneling via bandoap centers. The ef4ective mass

present in the denominator of the quantum i/f noise formula in this case should

just be the effective mass of the carriers after the tunneling process, i.e., the
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effective mass of the outgoing carriers emerging from the process we have

considered, or the effective mass of the carriers coming in to the process of

tunnelino toward the centers in the bandgap. Here we have considered the

tunneling process as the slower process which actually controls the rate of

tunneling via bandgap states. The capture of carriers by the bandgap states is

the second part o4 this compound process and has been considered fast enough, sc.

that it does not limit the rate of the total process. In general, however, both

parts of the process have to be considered as a limitation on the rate, and in this

case our noise formulae have to be revised through the inclusicn of an additional

term similar to tne recombination noise term.

In the case of very small MIS devices, where only conventional quantum i/f

noise should be present, we may find lower noise in the n - type devices, whose

bulk minority carriers are holes with much larger effective masses than the

electrons. This may happen in spite of the larger tunneling via bandgaP centers

located right under the surface of these devices.

Finally, we would like to empahsi:e that the present study has attempted to

explain the basic concepts of quantum i/f noise and to illustrate their application

to MIS infrared detectors. Although we have tried to pursue the calculation all

the way to the evaluation of the detectivity, the data which we used in the

calculation may not be applicable in the practical case at hand, and may have to be

replaced with pertinent data in any concrete case.

The author would like to acknowledge the help of M. Belasco, M. Kinch, E. Kelso

and R. Balcerak in many discussions on MIS devices and their noise problems.

"I
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VII. APPENDIX B

BACKGROUND OF THE G - R I/F NOISE DERIVATION •

At first sight it looks as if (1) is incorrect since (R - G) should be proportional to .-

the trap density N I . As will be shown in the following, the trap density is

incorporated into the time constants Zpo and Cno"

According to Warner and Grung [B4, eq. (4 - 191)3

R - G vpApvnAnNt (pn - n2 i)/vnAn(n + ni ) + v A(p+n) ( I)

Here, v is the averaae speed of the holes, v the averane speed for electrons,
P p

Ap the trap cross section for holes, and An the trap cross section for electrons.

Multiplying denominator and numerator in (B f) by Nt and then dividing both by

V A NvnAnNt yields

A I 
.
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R - 0 - (pn - n2
1 )/[(n + njYrpo + (p + nj)tno] (G 2)

which is .jst Eq. (3.23). In addition

po = 1/vpApNt : /Cp, Cp VpApNt, (B 2a)

"no = i/VnAnNt = i/Cn' Cn V A N (B 2b) 

as had to be proved. We see that po and ?'no are real - time constants

(dimension : seconds) and that Cp and Cn are real rates (dimension : s-i)

Note, however, that T= Zpo + Tno is not the time constant of the g - r

process. According to Van Viet [U5] the true g - r time constant Zt is

4S

Tt = [(n + ni)vnAn + (p + ni)vpAp ] = Nt/t(n + ni)Cn + (p + ni)Cp3 (B 3)

If we put il n= (n+ni)Cn/Nt, i/lp = (p + ni)Cp/Nt , then

( + B 3a)
t p p n

Our Eq. (3.23) is thus fully correct. If N., goes to zero,Tn , and C, no to

infinity and hen:e (R - G) goes to zero. Note, however, that 2-t is independent oi

Nt, except for a possible dependence of n and p upon Nt.

We also note that A and An are practically equal. For the case that the trapp n

is negatively charged when occupied by an electron, the excited electron interacts

with a neutral trap and hence has a cross. section of the order of i0-c.! 2 . _u'

when a hole is created by having an electron 4rom the valence band recombine with

the empty trap, the electron also interacts with a neutral trap and hence has

practizally the same cross section. If the trap is neutral while occupied by an

electron, the excited electron interacts with a positively charged trap :n hence V.

has a cross section of the order of ICI - i0- 15 cm2 . But the same is true when -



-- 79-

an electron from the valence band interacts with a positively charged trap.

Hence, A P and A. are always nearly equal.

Howeverf v pis inversely proportional to km P 1/2 and vrf is inversely

proportional to (mn*) 1/2 #5s thatZino is proportional to (mn 1 /I and Tto

(m ) i2~Consequently

(mp

Zpo 2 /(r po +Tno )2 _ m p /[(mn*)1/ 2 + m p*)1/ 2 ]

2no2 L PO + Tno)2 Z mn*/ r(mn*)/ mp*/Ji 2  (B 4)

We need this for the calculation .ofd H in the g - r i/f noise theory.

There are two forms of quantum 11f noise. In the first place C~ and Cn4
p n

to quantum 1/f noise theory. This would yield Hooge parameters S.'1q, and OCHn'

w.h ere

OS.Hp (4c(/3;y)(Av p /C)/ = (40t/37fl(R~T/m p*c.-)

~Hn (4d37T)Av2/c 2 ) =(4dL/37t)(31<T/m ~i,( a
- n(4/7(dn n ) (4a

since Mn pv A \/2 = mn 16vn'' =/ 3/2VT for the excitation cf electrnns and holes

fromr traps.

In the second place the electrons and holes in the space charge region are

decelerated or accelerated. The potential acrc=s the space charoe recion of width

W' eff is a(Vdif - V), where a = 1/2 for a symmetric jnction and as- 0.75 +c an n4 +

p jun--tion. Electrons ex cited from the trap level are accelerated and thus gain, an

energy En = ea(Vdif - V) = m *'Vn2 /2 and holes excited from the trap level are

accelerated and ganan energy E =e(' a)((Vdi- V) m *b&v '/2. Th~s
ganp - dif

produces quantum 1/f noise such that U4



4"Hp = r2e(I - a)(Vdif - V)/mp*C2 ](4oL/3)() (B 5)

dtHn = [ 2 ea(Vdif - V)/mn*C2 ](4d/3-1() (3 5 a)

Adding the two independent contributions tooHn and -Hp yields

dHn = (44(/3-j)(E2ea(Vdif - V + 3TJ/mn *C2 1

O(Hp = (4c(/3-1r)([2e(I - a)(Vdif - V) + 3kT]/mn*c 2), (B 6)

so that from (B 4), (B 6), and (3.35)

c4H = [Tpo/ po + ]no po +Tno)2]Hn

(4o/3A)(C2e(Vdif - V) + 6HT]/[(mn*)1/2 + (m p) 1 / 2 ] 2 c2 .  (B 6a)

For Hg,_,,Cd,,Te with x = 0.20, mn* = 0.Oim and mp* = 0.55m so that [(mn,*) 1 / 2 +

(m p*)/2] 2 = 0.71m which is a factor 71 larger than m n. An earlier estimate by

Radford and Jones [I3J used mn* instead of (mn*)1/ 2 + (m *)I/23.)
n p
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